These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17700633)

  • 1. Environment-dependent trade-offs between ectoparasite resistance and larval competitive ability in the Drosophila-Macrocheles system.
    Luong LT; Polak M
    Heredity (Edinb); 2007 Dec; 99(6):632-40. PubMed ID: 17700633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Costs of resistance in the Drosophila-macrocheles system: a negative genetic correlation between ectoparasite resistance and reproduction.
    Luong LT; Polak M
    Evolution; 2007 Jun; 61(6):1391-402. PubMed ID: 17542848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary change in parasitoid resistance under crowded conditions in Drosophila melanogaster.
    Sanders AE; Scarborough C; Layen SJ; Kraaijeveld AR; Godfray HC
    Evolution; 2005 Jun; 59(6):1292-9. PubMed ID: 16050105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host inbreeding increases susceptibility to ectoparasitism.
    Luong LT; Heath BD; Polak M
    J Evol Biol; 2007 Jan; 20(1):79-86. PubMed ID: 17210002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectoparasite resistance is correlated with reduced host egg hatch rate in the Drosophila-Macrocheles system.
    Rashed A; Hamilton B; Polak M
    Environ Entomol; 2008 Oct; 37(5):1099-104. PubMed ID: 19036187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster.
    Kraaijeveld AR; Godfray HC
    Nature; 1997 Sep; 389(6648):278-80. PubMed ID: 9305840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectoparasitic mites and their Drosophila hosts.
    Perez-Leanos A; Loustalot-Laclette MR; Nazario-Yepiz N; Markow TA
    Fly (Austin); 2017 Jan; 11(1):10-18. PubMed ID: 27540774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecology of fear: environment-dependent parasite avoidance among ovipositing
    Mierzejewski MK; Horn CJ; Luong LT
    Parasitology; 2019 Oct; 146(12):1564-1570. PubMed ID: 31234951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic polymorphism maintained by natural selection in a temporally varying environment.
    Borash DJ; Gibbs AG; Joshi A; Mueller LD
    Am Nat; 1998 Feb; 151(2):148-56. PubMed ID: 18811414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heritability and preadult survivorship costs of ectoparasite resistance in the naturally occurring Drosophila-Gamasodes mite system.
    Polak M; Bose J; Benoit JB; Singh H
    Evolution; 2023 Sep; 77(9):2068-2080. PubMed ID: 37393947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic plasticity more essential to maintaining variation in host-attachment behaviour than evolutionary trade-offs in a facultatively parasitic mite.
    Durkin ES; Luong LT
    Parasitology; 2019 Sep; 146(10):1289-1295. PubMed ID: 31064424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological genetics of abdominal pigmentation in Drosophila falleni: a pleiotropic link to nematode parasitism.
    Dombeck I; Jaenike J
    Evolution; 2004 Mar; 58(3):587-96. PubMed ID: 15119442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heritability of resistance against ectoparasitism in the Drosophila-Macrocheles system.
    Polak M
    J Evol Biol; 2003 Jan; 16(1):74-82. PubMed ID: 14635882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent parasitism by a facultative parasite of fruit flies.
    Luong LT; Brophy T; Stolz E; Chan SJ
    Parasitology; 2017 Sep; 144(11):1468-1475. PubMed ID: 28641605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated responses to artificial body size selection in growth, development, phenotypic plasticity and juvenile viability in yellow dung flies.
    Teuschl Y; Reim C; Blanckenhorn WU
    J Evol Biol; 2007 Jan; 20(1):87-103. PubMed ID: 17210003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster.
    Fellowes MD; Kraaijeveld AR; Godfray HC
    Proc Biol Sci; 1998 Aug; 265(1405):1553-8. PubMed ID: 9744107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectoparasitic mites exert non-consumptive effects on the larvae of a fruit fly host.
    Horn CJ; Robinson S; Tang H; Luong LT
    Parasitology; 2023 Sep; 150(10):934-938. PubMed ID: 37565500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs.
    Vijendravarma RK; Kraaijeveld AR; Godfray HC
    Evolution; 2009 Jan; 63(1):104-14. PubMed ID: 18786186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-offs between reproduction and behavioural resistance against ectoparasite infection.
    Horn CJ; Luong LT
    Physiol Behav; 2021 Oct; 239():113524. PubMed ID: 34229032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.