These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis. Gerlt JA; Babbitt PC Curr Opin Chem Biol; 1998 Oct; 2(5):607-12. PubMed ID: 9818186 [TBL] [Abstract][Full Text] [Related]
3. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Gerlt JA; Babbitt PC Annu Rev Biochem; 2001; 70():209-46. PubMed ID: 11395407 [TBL] [Abstract][Full Text] [Related]
4. Biocatalytic and biomimetic aminolysis reactions: useful tools for selective transformations on polyfunctional substrates. Alfonso I; Gotor V Chem Soc Rev; 2004 May; 33(4):201-9. PubMed ID: 15103401 [TBL] [Abstract][Full Text] [Related]
5. Microwave activation of enzymatic catalysis. Young DD; Nichols J; Kelly RM; Deiters A J Am Chem Soc; 2008 Aug; 130(31):10048-9. PubMed ID: 18613673 [TBL] [Abstract][Full Text] [Related]
6. Structure-based activity prediction for an enzyme of unknown function. Hermann JC; Marti-Arbona R; Fedorov AA; Fedorov E; Almo SC; Shoichet BK; Raushel FM Nature; 2007 Aug; 448(7155):775-9. PubMed ID: 17603473 [TBL] [Abstract][Full Text] [Related]
7. Computational biochemistry: old enzymes, new tricks. Ghirlanda G Nature; 2008 May; 453(7192):164-6. PubMed ID: 18464727 [No Abstract] [Full Text] [Related]
8. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). Mahadevan SA; Wi SG; Lee DS; Bae HJ FEMS Microbiol Lett; 2008 Oct; 287(2):205-11. PubMed ID: 18752623 [TBL] [Abstract][Full Text] [Related]
9. Characterization of dihydrodipicolinate reductase from Thermotoga maritima reveals evolution of substrate binding kinetics. Pearce FG; Sprissler C; Gerrard JA J Biochem; 2008 May; 143(5):617-23. PubMed ID: 18250105 [TBL] [Abstract][Full Text] [Related]
13. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Olsson MH; Parson WW; Warshel A Chem Rev; 2006 May; 106(5):1737-56. PubMed ID: 16683752 [No Abstract] [Full Text] [Related]
14. Computational methods to rationalize experimental strategies in biocatalysis. Braiuca P; Ebert C; Basso A; Linda P; Gardossi L Trends Biotechnol; 2006 Sep; 24(9):419-25. PubMed ID: 16870286 [TBL] [Abstract][Full Text] [Related]
15. Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritima. Loveridge EJ; Rodriguez RJ; Swanwick RS; Allemann RK Biochemistry; 2009 Jun; 48(25):5922-33. PubMed ID: 19453185 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Léger C; Bertrand P Chem Rev; 2008 Jul; 108(7):2379-438. PubMed ID: 18620368 [No Abstract] [Full Text] [Related]
17. Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from Thermotoga maritima. Loveridge EJ; Evans RM; Allemann RK Chemistry; 2008; 14(34):10782-8. PubMed ID: 18924193 [TBL] [Abstract][Full Text] [Related]
18. Stability, catalytic versatility and evolution of the (beta alpha)(8)-barrel fold. Höcker B; Jürgens C; Wilmanns M; Sterner R Curr Opin Biotechnol; 2001 Aug; 12(4):376-81. PubMed ID: 11551466 [TBL] [Abstract][Full Text] [Related]