These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17700696)

  • 1. Vitrification of a monatomic metallic liquid.
    Bhat MH; Molinero V; Soignard E; Solomon VC; Sastry S; Yarger JL; Angell CA
    Nature; 2007 Aug; 448(7155):787-90. PubMed ID: 17700696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon.
    McMillan PF; Wilson M; Daisenberger D; Machon D
    Nat Mater; 2005 Sep; 4(9):680-4. PubMed ID: 16113681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses.
    Yue Y; Angell CA
    Nature; 2004 Feb; 427(6976):717-20. PubMed ID: 14973480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic vibration process for producing bulk metallic glasses.
    Tamura T; Amiya K; Rachmat RS; Mizutani Y; Miwa K
    Nat Mater; 2005 Apr; 4(4):289-92. PubMed ID: 15750599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monatomic system with a liquid-liquid critical point and two distinct glassy states.
    Xu L; Buldyrev SV; Giovambattista N; Angell CA; Stanley HE
    J Chem Phys; 2009 Feb; 130(5):054505. PubMed ID: 19206982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of monatomic metallic glasses through ultrafast liquid quenching.
    Zhong L; Wang J; Sheng H; Zhang Z; Mao SX
    Nature; 2014 Aug; 512(7513):177-80. PubMed ID: 25119235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitrification and crystallization of metallic liquid under pressures.
    Wang L; Peng C; Wang Y; Zhang Y
    J Phys Condens Matter; 2006 Aug; 18(32):7559-68. PubMed ID: 21690869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Level Mechanisms of Nucleation of Pure Liquid Metals during Rapid Cooling.
    Han J; Wang C; Liu X; Wang Y; Liu ZK; Jiang J
    Chemphyschem; 2015 Dec; 16(18):3916-27. PubMed ID: 26502833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation instability in supercooled Cu-Zr-Al glass-forming liquids.
    Ryltsev RE; Klumov BA; Chtchelkatchev NM; Shunyaev KY
    J Chem Phys; 2018 Oct; 149(16):164502. PubMed ID: 30384697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beating crystallization in glass-forming metals by millisecond heating and processing.
    Johnson WL; Kaltenboeck G; Demetriou MD; Schramm JP; Liu X; Samwer K; Kim CP; Hofmann DC
    Science; 2011 May; 332(6031):828-33. PubMed ID: 21566189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and evolution of metastable bcc phase during solidification of liquid Ag: a molecular dynamics simulation study.
    Tian ZA; Liu RS; Zheng CX; Liu HR; Hou ZY; Peng P
    J Phys Chem A; 2008 Dec; 112(48):12326-36. PubMed ID: 18973323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular dynamics study of the phase transition in bcc metal nanoparticles.
    Shibuta Y; Suzuki T
    J Chem Phys; 2008 Oct; 129(14):144102. PubMed ID: 19045129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of inherent structures in glass-forming materials: I. The vitrification process.
    Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2008 Aug; 112(34):10619-27. PubMed ID: 18671423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The atomic-scale nucleation mechanism of NiTi metallic glasses upon isothermal annealing studied via molecular dynamics simulations.
    Li Y; Li J; Liu B
    Phys Chem Chem Phys; 2015 Oct; 17(40):27127-35. PubMed ID: 26414845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.