These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17700870)

  • 1. The dynamics of water evaporation from partially solvated cytochrome c in the gas phase.
    Steinberg MZ; Breuker K; Elber R; Gerber RB
    Phys Chem Chem Phys; 2007 Sep; 9(33):4690-7. PubMed ID: 17700870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein charge-state distributions in electrospray-ionization mass spectrometry do not appear to be limited by the surface tension of the solvent.
    Samalikova M; Grandori R
    J Am Chem Soc; 2003 Nov; 125(44):13352-3. PubMed ID: 14583019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gentle protein ionization assisted by high-velocity gas flow.
    Yang P; Cooks RG; Ouyang Z; Hawkridge AM; Muddiman DC
    Anal Chem; 2005 Oct; 77(19):6174-83. PubMed ID: 16194076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of gas-phase neutralization of electrospray-generated protein macroions.
    Kanev IL; Balabaev NK; Glyakina AV; Morozov VN
    J Phys Chem B; 2012 May; 116(20):5872-81. PubMed ID: 22553993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thermal unfolding of native cytochrome c in the transition from solution to gas phase probed by native electron capture dissociation.
    Breuker K; McLafferty FW
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4911-4. PubMed ID: 15999374
    [No Abstract]   [Full Text] [Related]  

  • 6. Proteins, lipids, and water in the gas phase.
    van der Spoel D; Marklund EG; Larsson DS; Caleman C
    Macromol Biosci; 2011 Jan; 11(1):50-9. PubMed ID: 21136535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural stability of electrosprayed proteins: temperature and hydration effects.
    Marklund EG; Larsson DS; van der Spoel D; Patriksson A; Caleman C
    Phys Chem Chem Phys; 2009 Sep; 11(36):8069-78. PubMed ID: 19727514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation studies of the protein-water interface. II. Properties at the mesoscopic resolution.
    Rudas T; Schröder C; Boresch S; Steinhauser O
    J Chem Phys; 2006 Jun; 124(23):234908. PubMed ID: 16821954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational and noncovalent complexation changes in proteins during electrospray ionization.
    Nemes P; Goyal S; Vertes A
    Anal Chem; 2008 Jan; 80(2):387-95. PubMed ID: 18081323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water penetration and escape in proteins.
    García AE; Hummer G
    Proteins; 2000 Feb; 38(3):261-72. PubMed ID: 10713987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured States.
    Myung S; Wiseman JM; Valentine SJ; Takats Z; Cooks RG; Clemmer DE
    J Phys Chem B; 2006 Mar; 110(10):5045-51. PubMed ID: 16526747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational evolution of ubiquitin ions in electrospray mass spectrometry: molecular dynamics simulations at gradually increasing temperatures.
    Segev E; Wyttenbach T; Bowers MT; Gerber RB
    Phys Chem Chem Phys; 2008 Jun; 10(21):3077-82. PubMed ID: 18688371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments.
    Luedtke WD; Landman U; Chiu YH; Levandier DJ; Dressler RA; Sok S; Gordon MS
    J Phys Chem A; 2008 Oct; 112(40):9628-49. PubMed ID: 18828572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and structural changes of water clusters in vacuum due to evaporation.
    Caleman C; van der Spoel D
    J Chem Phys; 2006 Oct; 125(15):154508. PubMed ID: 17059273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solution study on the local and global structure changes of cytochrome c: an unfolding process induced by urea.
    Hsu IJ; Shiu YJ; Jeng US; Chen TH; Huang YS; Lai YH; Tsai LN; Jang LY; Lee JF; Lin LJ; Lin SH; Wang Y
    J Phys Chem A; 2007 Sep; 111(38):9286-90. PubMed ID: 17696324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.