BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1770113)

  • 1. Separation of living red blood cells by gravitational field-flow fractionation.
    Cardot PJ; Gerota J; Martin M
    J Chromatogr; 1991 Jul; 568(1):93-103. PubMed ID: 1770113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of red blood cell fractionation by gravitational field-flow fractionation.
    Urbánková E; Vacek A; Nováková N; Matulík F; Chmelík J
    J Chromatogr; 1992 Nov; 583(1):27-34. PubMed ID: 1484089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different elution modes and field programming in gravitational field-flow fractionation. 2. Experimental verification of the range of conditions for flow-rate and carrier liquid density programming.
    Plocková J; Chmelík J
    J Chromatogr A; 2000 Feb; 868(2):217-27. PubMed ID: 10701672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.
    Sanz R; Puignou L; Galceran MT; Reschiglian P; Zattoni A; Melucci D
    Anal Bioanal Chem; 2004 Aug; 379(7-8):1068-75. PubMed ID: 15232672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of an experimental red blood cell pathology with gravitational field-flow fractionation.
    Merino-Dugay A; Cardot PJ; Czok M; Guernet M; Andreux JP
    J Chromatogr; 1992 Aug; 579(1):73-83. PubMed ID: 1447352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental design methodology applied to the study of channel dimensions on the elution of red blood cells in gravitational field flow fractionation.
    Rasouli S; Assidjo E; Chianéa T; Cardot PJ
    J Chromatogr B Biomed Sci Appl; 2001 Apr; 754(1):11-21. PubMed ID: 11318404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sedimentation field-flow fractionation application to Toxoplasma gondii separation and purification.
    Bouamrane F; Assidjo NE; Bouteille B; Dreyfuss MF; Dardé ML; Cardot PJ
    J Pharm Biomed Anal; 1999 Jul; 20(3):503-12. PubMed ID: 10701966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumentation of hollow fiber flow field flow fractionation for selective cell elution.
    Ibrahim T; Battu S; Cook-Moreau J; Cardot P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jul; 901():59-66. PubMed ID: 22743336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.
    Plocková J; Chmelík J
    J Chromatogr A; 2001 May; 918(2):361-70. PubMed ID: 11407583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of red blood cells by field flow fractionation.
    Andreux JP; Merino A; Renard M; Forestier F; Cardot P
    Exp Hematol; 1993 Feb; 21(2):326-30. PubMed ID: 8425568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip.
    Zhang XB; Wu ZQ; Wang K; Zhu J; Xu JJ; Xia XH; Chen HY
    Anal Chem; 2012 Apr; 84(8):3780-6. PubMed ID: 22449121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell sorting by one gravity SPLITT fractionation.
    Benincasa MA; Moore LR; Williams PS; Poptic E; Carpino F; Zborowski M
    Anal Chem; 2005 Aug; 77(16):5294-301. PubMed ID: 16097771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size- and shape-dependent separation of TiO2 colloidal sub-populations with gravitational field flow fractionation.
    Rasouli S; Blanchart P; Clédat D; Cardo PJ
    J Chromatogr A; 2001 Jul; 923(1-2):119-26. PubMed ID: 11510534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field- and flow-dependent trapping of red blood cells on polycarbonate accumulation wall in sedimentation field-flow fractionation.
    Chianéa T; Cardot PJ; Assidjo E; Monteil J; Clarot I; Krausz P
    J Chromatogr B Biomed Sci Appl; 1999 Oct; 734(1):91-9. PubMed ID: 10574194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and size distribution of red blood cells of diverse size, shape, and origin by flow/hyperlayer field-flow fractionation.
    Barman BN; Ashwood ER; Giddings JC
    Anal Biochem; 1993 Jul; 212(1):35-42. PubMed ID: 8368513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of human and animal cells by steric field-flow fractionation.
    Caldwell KD; Cheng ZQ; Hradecky P; Giddings JC
    Cell Biophys; 1984 Dec; 6(4):233-51. PubMed ID: 6085558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of experimental conditions for the separation of small and large starch granules by gravitational field-flow fractionation.
    Janousková J; Budinská M; Plocková J; Chmelík J
    J Chromatogr A; 2001 Apr; 914(1-2):183-7. PubMed ID: 11358212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified method for recovery of autologous red blood cells from transfused patients.
    Reid ME; Toy PT
    Am J Clin Pathol; 1983 Mar; 79(3):364-6. PubMed ID: 6829505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature field-flow fractionation system for analysis of blood cells.
    Yue V; Kowal R; Neargarder L; Bond L; Muetterties A; Parsons R
    Clin Chem; 1994 Sep; 40(9):1810-4. PubMed ID: 8070106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.