BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17701303)

  • 21. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering.
    Piszko P; Włodarczyk M; Zielińska S; Gazińska M; Płociński P; Rudnicka K; Szwed A; Krupa A; Grzymajło M; Sobczak-Kupiec A; Słota D; Kobielarz M; Wojtków M; Szustakiewicz K
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Studies on poly-D, L-lactide acid scaffolds modified by conjugation of bioactive peptides via ammonia plasma treatment].
    Xu Z; Chen J; Yin S; Zhu Q; Li T; Zha D; Jiang X; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1376-85. PubMed ID: 21226366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process.
    Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW
    Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications.
    Delabarde C; Plummer CJ; Bourban PE; Månson JA
    J Mater Sci Mater Med; 2012 Jun; 23(6):1371-85. PubMed ID: 22437691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering.
    Abdal-hay A; Sheikh FA; Lim JK
    Colloids Surf B Biointerfaces; 2013 Feb; 102():635-43. PubMed ID: 23107942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering.
    Kumar P; Dehiya BS; Sindhu A
    Iran Biomed J; 2019 May; 23(3):190-9. PubMed ID: 30266067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties.
    Zhang CY; Lu H; Zhuang Z; Wang XP; Fang QF
    J Mater Sci Mater Med; 2010 Dec; 21(12):3077-83. PubMed ID: 20890640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
    Wei G; Ma PX
    Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of a porous scaffold based on poly(D,L-lactide) and N-hydroxyapatite by phase separation.
    Wang XH; Shi S; Guo G; Fu SZ; Fan M; Luo F; Zhao X; Wei YQ; Qian ZY
    J Biomater Sci Polym Ed; 2011; 22(14):1917-29. PubMed ID: 20961495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].
    Fan J; Chang S; Dong M; Huang D; Li J; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1119-24. PubMed ID: 23469542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration.
    Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M
    J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration.
    Diaz-Gomez L; García-González CA; Wang J; Yang F; Aznar-Cervantes S; Cenis JL; Reyes R; Delgado A; Évora C; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2017 Jul; 527(1-2):115-125. PubMed ID: 28539234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Dioxane and N-Methyl-2-pyrrolidone as a Solvent on Biocompatibility and Degradation Performance of PLGA/nHA Scaffolds.
    Aboudzadeh N; Khavandi A; Javadpour J; Shokrgozar MA; Imani M
    Iran Biomed J; 2021 Nov; 25(6):408-16. PubMed ID: 34641642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold.
    Xiao WD; Zhong ZM; Tang YZ; Xu ZX; Xu Z; Chen JT
    Saudi Med J; 2012 Jun; 33(6):601-7. PubMed ID: 22729113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Promoted healing of femoral defects with in situ grown fibrous composites of hydroxyapatite and poly(DL-lactide).
    Zou B; Chen X; Zhi W; Liu Y; Cui W; Hu S; Li X
    J Biomed Mater Res A; 2012 Jun; 100(6):1407-18. PubMed ID: 22374826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.