BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 17701434)

  • 21. Computational simulation of dental implant osseointegration through resonance frequency analysis.
    Pérez MA; Moreo P; García-Aznar JM; Doblaré M
    J Biomech; 2008; 41(2):316-25. PubMed ID: 17976627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite Element analyses to study periprosthetic bone adaptation.
    Weinans H; Sumner DR
    Stud Health Technol Inform; 1997; 40():3-16. PubMed ID: 10173071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs.
    Baas J
    Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel nano-porous alumina biomaterial with potential for loading with bioactive materials.
    Walpole AR; Xia Z; Wilson CW; Triffitt JT; Wilshaw PR
    J Biomed Mater Res A; 2009 Jul; 90(1):46-54. PubMed ID: 18481790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants.
    Geris L; Van Oosterwyck H; Vander Sloten J; Duyck J; Naert I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):277-88. PubMed ID: 14675948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test.
    Helgason B; Viceconti M; Rúnarsson TP; Brynjólfsson S
    J Biomech; 2008; 41(8):1675-81. PubMed ID: 18471819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft tissue movement and stress shielding do not affect bone ingrowth in the bone conduction chamber.
    van der Donk S; Verdonschot N; Schreurs BW; Buma P
    Comp Med; 2002 Aug; 52(4):328-31. PubMed ID: 12211276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm.
    Tarlochan F; Mehboob H; Mehboob A; Chang SH
    Biomech Model Mechanobiol; 2018 Jun; 17(3):701-716. PubMed ID: 29168071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations.
    Wikesjö UM; Qahash M; Polimeni G; Susin C; Shanaman RH; Rohrer MD; Wozney JM; Hall J
    J Clin Periodontol; 2008 Nov; 35(11):1001-10. PubMed ID: 18976397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cementless implant fixation--toward improved reliability.
    Pilliar RM
    Orthop Clin North Am; 2005 Jan; 36(1):113-9. PubMed ID: 15542130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Histomorphometric evaluation of bone ingrowth of porous titanium by a computer-assisted analyzing system].
    Endres S; Wilke M; Frank H; Knöll P; Kratz M; Windler M; Wilke A
    Biomed Tech (Berl); 2005 Dec; 50(12):408-12. PubMed ID: 16429945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous polysulfone coatings for fixation of femoral stems by bony ingrowth.
    Spector M; Davis RJ; Lunceford EM; Harmon SL
    Clin Orthop Relat Res; 1983 Jun; (176):34-41. PubMed ID: 6851340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth.
    Pilliar RM
    Clin Orthop Relat Res; 1983 Jun; (176):42-51. PubMed ID: 6851341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo.
    Erli HJ; Rüger M; Ragoss C; Jahnen-Dechent W; Hollander DA; Paar O; von Walter M
    Biomaterials; 2006 Mar; 27(8):1270-6. PubMed ID: 16139880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation.
    Pérez MA; Prendergast PJ
    J Biomech; 2007; 40(10):2244-53. PubMed ID: 17173925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication methods of porous metals for use in orthopaedic applications.
    Ryan G; Pandit A; Apatsidis DP
    Biomaterials; 2006 May; 27(13):2651-70. PubMed ID: 16423390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study.
    Puthumanapully PK; Browne M
    J Orthop Res; 2011 May; 29(5):787-94. PubMed ID: 21437960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.