These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 17701434)

  • 41. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.
    Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T
    Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Osseointegration of metal.
    Schatzker J
    Can J Surg; 1995 Feb; 38 Suppl 1():S49-54. PubMed ID: 7874629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of alendronate on bone ingrowth into porous tantalum and carbon fiber interbody devices: an experimental study on spinal fusion in pigs.
    Zou X; Xue Q; Li H; Bünger M; Lind M; Bünge C
    Acta Orthop Scand; 2003 Oct; 74(5):596-603. PubMed ID: 14620983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment.
    Ramamurti BS; Orr TE; Bragdon CR; Lowenstein JD; Jasty M; Harris WH
    J Biomed Mater Res; 1997 Aug; 36(2):274-80. PubMed ID: 9261690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining relevance of a weight-bearing ovine model for bone ingrowth assessment.
    Willie BM; Bloebaum RD; Bireley WR; Bachus KN; Hofmann AA
    J Biomed Mater Res A; 2004 Jun; 69(3):567-76. PubMed ID: 15127404
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent modification of porous implants using extracellular matrix proteins to accelerate neovascularization.
    Williams SK; Kleinert LB; Hagen KM; Clapper DL
    J Biomed Mater Res A; 2006 Jul; 78(1):59-65. PubMed ID: 16602088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Difference in bone ingrowth after one versus two daily episodes of micromotion: experiments with titanium chambers in rabbits.
    Goodman S; Wang JS; Doshi A; Aspenberg P
    J Biomed Mater Res; 1993 Nov; 27(11):1419-24. PubMed ID: 8263004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histological and biomechanical evaluation of phosphorylcholine-coated titanium implants.
    Susin C; Qahash M; Hall J; Sennerby L; Wikesjö UM
    J Clin Periodontol; 2008 Mar; 35(3):270-5. PubMed ID: 18269667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion.
    Bragdon CR; Burke D; Lowenstein JD; O'Connor DO; Ramamurti B; Jasty M; Harris WH
    J Arthroplasty; 1996 Dec; 11(8):945-51. PubMed ID: 8986573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A macro-micro FE and ANN framework to assess site-specific bone ingrowth around the porous beaded-coated implant: an example with BOX® tibial implant for total ankle replacement.
    Minku ; Ghosh R
    Med Biol Eng Comput; 2024 Jun; 62(6):1639-1654. PubMed ID: 38321323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved osseointegration of PTFEP-coated titanium implants.
    Zeifang F; Grunze M; Delling G; Lorenz H; Heisel C; Tosounidis G; Sabo D; Simank HG; Holstein JH
    Med Sci Monit; 2008 Feb; 14(2):BR35-40. PubMed ID: 18227757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mathematical model of the coagulation in the bone-dental implant interface.
    Vanegas-Acosta JC; Landinez P NS; Garzón-Alvarado DA
    Comput Biol Med; 2010 Oct; 40(10):791-801. PubMed ID: 20810103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of finite element analysis to model bone-implant contact with basal implants.
    Ihde S; Goldmann T; Himmlova L; Aleksic Z
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Jul; 106(1):39-48. PubMed ID: 18439855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of abutment angulation on micromotion level for immediately loaded dental implants: a 3-D finite element analysis.
    Kao HC; Gung YW; Chung TF; Hsu ML
    Int J Oral Maxillofac Implants; 2008; 23(4):623-30. PubMed ID: 18807557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.
    Mukherjee K; Gupta S
    Med Biol Eng Comput; 2017 Mar; 55(3):449-465. PubMed ID: 27255452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior maxilla (Type IV bone) in non-human primates.
    Wikesjö UM; Huang YH; Xiropaidis AV; Sorensen RG; Rohrer MD; Prasad HS; Wozney JM; Hall J
    J Clin Periodontol; 2008 Nov; 35(11):992-1000. PubMed ID: 18976396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteoinduction, osteoconduction and osseointegration.
    Albrektsson T; Johansson C
    Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S96-101. PubMed ID: 11716023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.