These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17701906)

  • 1. Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100K scan.
    Ionita-Laza I; McQueen MB; Laird NM; Lange C
    Am J Hum Genet; 2007 Sep; 81(3):607-14. PubMed ID: 17701906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and replication using the same data set: testing strategies for family-based studies in which all probands are affected.
    Murphy A; Weiss ST; Lange C
    PLoS Genet; 2008 Sep; 4(9):e1000197. PubMed ID: 18802462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-stage variable-stringency semiparametric method for mapping quantitative-trait loci with the use of genomewide-scan data on sib pairs.
    Ghosh S; Majumder PP
    Am J Hum Genet; 2000 Mar; 66(3):1046-61. PubMed ID: 10712217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage testing strategies for genome-wide association studies in family-based designs.
    Murphy A; T Weiss S; Lange C
    Methods Mol Biol; 2010; 620():485-96. PubMed ID: 20652517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint analysis for genome-wide association studies in family-based designs.
    Sha Q; Zhang Z; Zhang S
    PLoS One; 2011; 6(7):e21957. PubMed ID: 21799758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-stage approach for genome-wide association studies with family data for quantitative traits.
    Chen MH; Larson MG; Hsu YH; Peloso GM; Guo CY; Fox CS; Atwood LD; Yang Q
    BMC Genet; 2010 May; 11():40. PubMed ID: 20470424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage association tests for genome-wide association studies based on family data with arbitrary family structure.
    Feng T; Zhang S; Sha Q
    Eur J Hum Genet; 2007 Nov; 15(11):1169-75. PubMed ID: 17653107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies.
    Sun L; Craiu RV; Paterson AD; Bull SB
    Genet Epidemiol; 2006 Sep; 30(6):519-30. PubMed ID: 16800000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study.
    Kathiresan S; Manning AK; Demissie S; D'Agostino RB; Surti A; Guiducci C; Gianniny L; Burtt NP; Melander O; Orho-Melander M; Arnett DK; Peloso GM; Ordovas JM; Cupples LA
    BMC Med Genet; 2007 Sep; 8 Suppl 1(Suppl 1):S17. PubMed ID: 17903299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the noninformative families in family-based association tests: a powerful new testing strategy.
    Lange C; DeMeo D; Silverman EK; Weiss ST; Laird NM
    Am J Hum Genet; 2003 Oct; 73(4):801-11. PubMed ID: 14502464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using linkage genome scans to improve power of association in genome scans.
    Roeder K; Bacanu SA; Wasserman L; Devlin B
    Am J Hum Genet; 2006 Feb; 78(2):243-52. PubMed ID: 16400608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-driven weighting scheme for family-based genome-wide association studies.
    Qin H; Feng T; Zhang S; Sha Q
    Eur J Hum Genet; 2010 May; 18(5):596-603. PubMed ID: 19935828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust and Powerful Affected Sibpair Test for Rare Variant Association.
    Lin KH; Zöllner S
    Genet Epidemiol; 2015 Jul; 39(5):325-33. PubMed ID: 25966809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene finding strategies.
    Vink JM; Boomsma DI
    Biol Psychol; 2002 Oct; 61(1-2):53-71. PubMed ID: 12385669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: replication and integration with other genome-wide datasets.
    Florez JC; Manning AK; Dupuis J; McAteer J; Irenze K; Gianniny L; Mirel DB; Fox CS; Cupples LA; Meigs JB
    Diabetes; 2007 Dec; 56(12):3063-74. PubMed ID: 17848626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the genome-wide analysis of copy number variants in family-based designs: methods for combining family-based and population-based information for testing dichotomous or quantitative traits, or completely ascertained samples.
    Murphy A; Won S; Rogers A; Chu JH; Raby BA; Lange C
    Genet Epidemiol; 2010 Sep; 34(6):582-90. PubMed ID: 20718041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13.
    Francks C; Tozzi F; Farmer A; Vincent JB; Rujescu D; St Clair D; Muglia P
    Mol Psychiatry; 2010 Mar; 15(3):319-25. PubMed ID: 18794890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies.
    Yoo YJ; Bull SB; Paterson AD; Waggott D; Sun L;
    Genet Epidemiol; 2010 Feb; 34(2):107-18. PubMed ID: 19626703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing for direct genetic effects using a screening step in family-based association studies.
    Lutz SM; Vansteelandt S; Lange C
    Front Genet; 2013; 4():243. PubMed ID: 24312120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backward genotype-trait association (BGTA)-based dissection of complex traits in case-control designs.
    Zheng T; Wang H; Lo SH
    Hum Hered; 2006; 62(4):196-212. PubMed ID: 17114886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.