These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 177023)
1. Effect of propranolol on ethanol metabolism-evidence for the role of mitochondrial NADH oxidation. Isselbacher KJ; Carter EA Biochem Pharmacol; 1976 Jan; 25(2):169-74. PubMed ID: 177023 [No Abstract] [Full Text] [Related]
2. The interrelationship between fructose and ethanol metabolism in the isolated perfused pig liver. Damgaard SE; Sestoft L; Lundquist F; Tygstrup N Acta Med Scand Suppl; 1972; 542():131-40. PubMed ID: 4146848 [No Abstract] [Full Text] [Related]
3. Ethanol metabolism in the liver. Thieden HI Acta Pharmacol Toxicol (Copenh); 1975; 36(Suppl 1):1-51. PubMed ID: 1094800 [No Abstract] [Full Text] [Related]
4. Oxidation of extramitochondrial NADH by rat liver mitochondria. Possible role of ACYL-SCoA elongation enzymes. Grunnet N Biochem Biophys Res Commun; 1970 Nov; 41(4):909-17. PubMed ID: 4320070 [No Abstract] [Full Text] [Related]
5. The action of pyruvate on ethanol oxidation by intact isolated liver cells. Berry MN Biochem J; 1971 Jul; 123(4):41P. PubMed ID: 4331324 [No Abstract] [Full Text] [Related]
11. Cytochrome c stimulated oxidation of ethanol by liver mitochondria. Kiessling KH; Pilström L Biochem Pharmacol; 1973 Sep; 22(18):2229-35. PubMed ID: 4354786 [No Abstract] [Full Text] [Related]
12. Hepatic and metabolic effects of alcohol (1966 to 1973). Lieber CS Gastroenterology; 1973 Nov; 65(5):821-46. PubMed ID: 4148485 [No Abstract] [Full Text] [Related]
13. The roles of the hepatocellular redox state and the hepatic acetaldehyde concentration in determining the ethanol elimination rate in fasted rats. Ryle PR; Chakraborty J; Thomson AD Biochem Pharmacol; 1985 Oct; 34(19):3577-83. PubMed ID: 2932116 [TBL] [Abstract][Full Text] [Related]
14. The role of alcohol dehydrogenase in microsomal ethanol oxidation and the adaptive increase in ethanol metabolism due to chronic treatment with ethanol. Thurman RG; Brentzel HJ Alcohol Clin Exp Res; 1977 Jan; 1(1):33-8. PubMed ID: 201176 [No Abstract] [Full Text] [Related]
15. The effect of Ca2+ on the oxidation of exogenous NADH by rat liver mitochondria. Gazzotti P Biochem Biophys Res Commun; 1975 Nov; 67(2):634-8. PubMed ID: 173324 [No Abstract] [Full Text] [Related]
16. Effects of ethanol-derived acetaldehyde on the phosphorylation potential and on the intramitochondrial redox state in intact rat liver. Lindros KO; Stowell A Arch Biochem Biophys; 1982 Oct; 218(2):429-37. PubMed ID: 6760816 [No Abstract] [Full Text] [Related]
17. Rapid oxidation of NADPH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism. Dawson AG Biochem Pharmacol; 1982 Sep; 31(17):2733-8. PubMed ID: 7138569 [TBL] [Abstract][Full Text] [Related]
18. Factors contributing to the adaptive increase in ethanol metabolism due to chronic consumption of ethanol. Cederbaum AI; Dicker E; Lieber CS; Rubin E Alcohol Clin Exp Res; 1977 Jan; 1(1):27-31. PubMed ID: 337821 [No Abstract] [Full Text] [Related]
19. Ethanol metabolism. Khanna JM; Israel Y Int Rev Physiol; 1980; 21():275-315. PubMed ID: 6993397 [No Abstract] [Full Text] [Related]
20. Effect of acetaldehyde on activity of shuttles for the transport of reducing equivalents into the mitochondria. Cederbaum AI; Lieber CS; Rubin E FEBS Lett; 1973 Nov; 37(1):89-92. PubMed ID: 4356722 [No Abstract] [Full Text] [Related] [Next] [New Search]