BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17702337)

  • 1. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil.
    Joner EJ; Munier-Lamy C; Gouget B
    Environ Toxicol Chem; 2007 Aug; 26(8):1644-8. PubMed ID: 17702337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine.
    Favas PJC; Pratas J; Mitra S; Sarkar SK; Venkatachalam P
    Sci Total Environ; 2016 Oct; 568():350-368. PubMed ID: 27314898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites.
    Kenarova A; Radeva G; Traykov I; Boteva S
    Ecotoxicol Environ Saf; 2014 Feb; 100():226-32. PubMed ID: 24315773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranium(VI) reduction and removal by high performing purified anaerobic cultures from mine soil.
    Chabalala S; Chirwa EM
    Chemosphere; 2010 Jan; 78(1):52-5. PubMed ID: 19883933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.
    Mumtaz S; Streten C; Parry DL; McGuinness KA; Lu P; Gibb KS
    J Environ Radioact; 2015 Nov; 149():121-8. PubMed ID: 26233650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils.
    Vandenhove H; Vanhoudt N; Duquène L; Antunes K; Wannijn J
    J Environ Radioact; 2014 Nov; 137():1-9. PubMed ID: 24980511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent aspects of uranium toxicology in medical geology.
    Bjørklund G; Christophersen OA; Chirumbolo S; Selinus O; Aaseth J
    Environ Res; 2017 Jul; 156():526-533. PubMed ID: 28431380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine.
    Antunes SC; Castro BB; Nunes B; Pereira R; Gonçalves F
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):620-31. PubMed ID: 18397811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community.
    Maleke M; Williams P; Castillo J; Botes E; Ojo A; DeFlaun M; van Heerden E
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8442-50. PubMed ID: 25548012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of heavy metals, and application to the remediation of acid mine drainage water containing uranium.
    Macaskie LE
    Res Microbiol; 1997; 148(6):528-30. PubMed ID: 9765836
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.
    Boteva S; Radeva G; Traykov I; Kenarova A
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5644-53. PubMed ID: 26578378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan.
    Skipperud L; Strømman G; Yunusov M; Stegnar P; Uralbekov B; Tilloboev H; Zjazjev G; Heier LS; Rosseland BO; Salbu B
    J Environ Radioact; 2013 Sep; 123():50-62. PubMed ID: 22687556
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Le TH; Michel H; Champion J
    J Environ Radioact; 2019 Apr; 199-200():1-6. PubMed ID: 30639726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.
    Dessouki TC; Hudson JJ; Neal BR; Bogard MJ
    Water Res; 2005 Aug; 39(13):3055-61. PubMed ID: 15979684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical and mineralogical characterization of soil-saprolite cores from a field research site, Tennessee.
    Moon JW; Roh Y; Phelps TJ; Phillips DH; Watson DB; Kim YJ; Brooks SC
    J Environ Qual; 2006; 35(5):1731-41. PubMed ID: 16899744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil uranium concentration at Ranger Uranium Mine Land Application Areas drives changes in the bacterial community.
    Mumtaz S; Streten C; Parry DL; McGuinness KA; Lu P; Gibb KS
    J Environ Radioact; 2018 Sep; 189():14-23. PubMed ID: 29549875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of chronic low-dose elemental and radiological exposures of biota at the Kanab North uranium mine site in the Grand Canyon watershed.
    Cleveland D; Hinck JE; Lankton JS
    Integr Environ Assess Manag; 2019 Jan; 15(1):112-125. PubMed ID: 30136757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site.
    Martins M; Faleiro ML; Chaves S; Tenreiro R; Costa MC
    Sci Total Environ; 2010 May; 408(12):2621-8. PubMed ID: 20334901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.