These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17702663)

  • 1. Atomic force microscopy evaluation of the effects of a novel antimicrobial multimeric peptide on Pseudomonas aeruginosa.
    Rossetto G; Bergese P; Colombi P; Depero LE; Giuliani A; Nicoletto SF; Pirri G
    Nanomedicine; 2007 Sep; 3(3):198-207. PubMed ID: 17702663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells.
    Mortensen NP; Fowlkes JD; Sullivan CJ; Allison DP; Larsen NB; Molin S; Doktycz MJ
    Langmuir; 2009 Apr; 25(6):3728-33. PubMed ID: 19227989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial surfaces investigated using atomic force microscopy.
    Bolshakova AV; Kiselyova OI; Yaminsky IV
    Biotechnol Prog; 2004; 20(6):1615-22. PubMed ID: 15575691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of atomic force microscopy as a tool to understand the action of antimicrobial peptides on bacteria.
    Li A; Ho B; Ding JL; Lim CT
    Methods Mol Biol; 2010; 618():235-47. PubMed ID: 20094868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural investigations on native collagen type I fibrils using AFM.
    Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S
    Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of angiotensin II type 1 receptor by atomic force microscopy with functionalized tip.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Dec; 1(4):306-12. PubMed ID: 17292103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria.
    Li A; Lee PY; Ho B; Ding JL; Lim CT
    Biochim Biophys Acta; 2007 Mar; 1768(3):411-8. PubMed ID: 17275779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy.
    Touhami A; Jericho MH; Boyd JM; Beveridge TJ
    J Bacteriol; 2006 Jan; 188(2):370-7. PubMed ID: 16385026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct force measurement of the interaction between liposome and the C2A domain of synaptotagmin I using atomic force microscopy.
    Park JH; Kwon EY; Jung HI; Kim DE
    Biotechnol Lett; 2006 Apr; 28(7):505-9. PubMed ID: 16614933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative method for determining the lateral strength of bacterial adhesion and application for characterizing adhesion kinetics.
    Deupree SM; Schoenfisch MH
    Langmuir; 2008 May; 24(9):4700-7. PubMed ID: 18399690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the antimicrobial peptide melimine with bacterial membranes.
    Rasul R; Cole N; Balasubramanian D; Chen R; Kumar N; Willcox MD
    Int J Antimicrob Agents; 2010 Jun; 35(6):566-72. PubMed ID: 20227248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-simultaneous imaging/pulling analysis of single polyprotein molecules by atomic force microscopy.
    Valbuena A; Oroz J; Vera AM; Gimeno A; Gómez-Herrero J; Carrión-Vázquez M
    Rev Sci Instrum; 2007 Nov; 78(11):113707. PubMed ID: 18052480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical probing of microbubbles using the atomic force microscope.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross JA; McDicken WN; Koutsos V
    Ultrasonics; 2007 Nov; 46(4):349-54. PubMed ID: 17720211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct manipulation of a single potassium channel gate with an atomic force microscope probe.
    Kitta M; Ide T; Hirano M; Tanaka H; Yanagida T; Kawai T
    Small; 2011 Aug; 7(16):2379-83. PubMed ID: 21656673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy measurements of peptide-wrapped single-walled carbon nanotube diameters.
    Poenitzsch VZ; Musselman IH
    Microsc Microanal; 2006 Jun; 12(3):221-7. PubMed ID: 17481358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM.
    Oreopoulos J; Yip CM
    J Struct Biol; 2009 Oct; 168(1):21-36. PubMed ID: 19268707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new image correction method for live cell atomic force microscopy.
    Shen Y; Sun JL; Zhang A; Hu J; Xu LX
    Phys Med Biol; 2007 Apr; 52(8):2185-96. PubMed ID: 17404463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and pH studied by atomic force microscopy.
    Lin S; Wang YM; Huang LS; Lin CW; Hsu SM; Lee CK
    Biosens Bioelectron; 2007 Jan; 22(6):1013-9. PubMed ID: 16730972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.