BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17703463)

  • 1. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin.
    De Grandis V; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2007; 20(4):215-26. PubMed ID: 17703463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and Azurin.
    Bizzarri AR; Di Agostino S; Andolfi L; Cannistraro S
    J Mol Recognit; 2009; 22(6):506-15. PubMed ID: 19642109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique complex between bacterial azurin and tumor-suppressor protein p53.
    Apiyo D; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2005 Jul; 332(4):965-8. PubMed ID: 15913547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain.
    Butler JS; Loh SN
    Biochemistry; 2003 Mar; 42(8):2396-403. PubMed ID: 12600206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain.
    Duan J; Nilsson L
    Biochemistry; 2006 Jun; 45(24):7483-92. PubMed ID: 16768444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of azurin and C-terminal domain of p53 is mediated by nucleic acids.
    Xu C; Zhao Y; Zhao B
    Arch Biochem Biophys; 2010 Nov; 503(2):223-9. PubMed ID: 20800053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2008; 21(1):63-70. PubMed ID: 18247358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of sequence-specific protein-DNA association: computational analysis of integrase Tn916 binding to its target DNA.
    Gorfe AA; Jelesarov I
    Biochemistry; 2003 Oct; 42(40):11568-76. PubMed ID: 14529266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characteristics of the hydrophobic patch of azurin and its interaction with p53: a site-directed spin labeling study.
    Xu C; Yin J; Zhao B
    Sci China Life Sci; 2010 Oct; 53(10):1181-8. PubMed ID: 20953940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin.
    Santini S; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2011; 24(6):1043-55. PubMed ID: 22038811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data.
    Cohavi O; Tobi D; Schreiber G
    J Mol Biol; 2009 Jul; 390(3):503-15. PubMed ID: 19465028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Evidence of p53-DBD Disorder Decrease upon Interaction with the Anticancer Protein Azurin.
    Signorelli S; Cannistraro S; Bizzarri AR
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31238511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational screening and design of S100B ligand to block S100B-p53 interaction.
    Whitlow JL; Varughese JF; Zhou Z; Bartolotti LJ; Li Y
    J Mol Graph Model; 2009; 27(8):969-77. PubMed ID: 19324580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The early steps in the unfolding of azurin.
    Rizzuti B; Daggett V; Guzzi R; Sportelli L
    Biochemistry; 2004 Dec; 43(49):15604-9. PubMed ID: 15581373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking and molecular dynamics simulation of the Azurin-Cytochrome c551 electron transfer complex.
    Bizzarri AR; Brunori E; Bonanni B; Cannistraro S
    J Mol Recognit; 2007; 20(2):122-31. PubMed ID: 17407190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the coordination geometry for Mg2+ in the p53 DNA-binding domain: insights from computational studies.
    Wang T; Shao X; Cai W; Xue Y; Wang S; Feng X
    Phys Chem Chem Phys; 2011 Jan; 13(3):1140-51. PubMed ID: 21076775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations.
    Bizzarri AR; Moscetti I; Cannistraro S
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):342-350. PubMed ID: 30419285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.