BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17703658)

  • 1. In vivo ultrasound biomicroscopy of skin: spectral system characteristics and inverse filtering optimization.
    Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1551-9. PubMed ID: 17703658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.
    Bosisio MR; Hasquenoph JM; Sandrin L; Laugier P; Bridal SL; Yon S
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):654-64. PubMed ID: 19789096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
    Oralkan O; Ergun AS; Johnson JA; Karaman M; Demirci U; Kaviani K; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1596-610. PubMed ID: 12484483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of ultrasound attenuation from broadband echo-signals using bandpass filtering.
    Kim H; Zagzebski JA; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1153-9. PubMed ID: 18519224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo biomicroscopy of the skin with high-resolution magnetic resonance imaging and high frequency ultrasound.
    Liffers A; Vogt M; Ermert H
    Biomed Tech (Berl); 2003 May; 48(5):130-4. PubMed ID: 12838795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings.
    Lu JY; Cheng J; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1796-812. PubMed ID: 17036788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging findings of Bowen's disease: A comparison between ultrasound biomicroscopy and conventional high-frequency ultrasound.
    Li MX; Wang Q; Li XL; Zhao CK; Zhu RZ; Chen J; Li L; Guo LH; Xu HX
    Skin Res Technol; 2020 Sep; 26(5):654-663. PubMed ID: 32196763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging.
    Turnbull DH; Starkoski BG; Harasiewicz KA; Semple JL; From L; Gupta AK; Sauder DN; Foster FS
    Ultrasound Med Biol; 1995; 21(1):79-88. PubMed ID: 7754581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
    Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic microscanning.
    Vogt M; Opretzka J; Perrey C; Ermert H
    Proc Inst Mech Eng H; 2010; 224(2):225-40. PubMed ID: 20349816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited-angle spatial compound imaging of skin with high-frequency ultrasound (20 MHz).
    Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1975-83. PubMed ID: 18986893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulated Excitation Imaging System for Intravascular Ultrasound.
    Qiu W; Wang X; Chen Y; Fu Q; Su M; Zhang L; Xia J; Dai J; Zhang Y; Zheng H
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1935-1942. PubMed ID: 27893376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound research scanner for real-time synthetic aperture data acquisition.
    Jensen JA; Holm O; Jensen LJ; Bendsen H; Nikolov SI; Tomov BG; Munk P; Hansen M; Salomonsen K; Hansen J; Gormsen K; Pedersen HM; Gammelmark KL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):881-91. PubMed ID: 16048189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation and backscatter estimation using video signal analysis applied to B-mode images.
    Knipp BS; Zagzebski JA; Wilson TA; Dong F; Madsen EL
    Ultrason Imaging; 1997 Jul; 19(3):221-33. PubMed ID: 9447670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging.
    Qiu W; Yu Y; Tsang F; Sun L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1558-67. PubMed ID: 22828850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation estimations using envelope echo data: analysis and simulations.
    Tu H; Zagzebski J; Chen Q
    Ultrasound Med Biol; 2006 Mar; 32(3):377-86. PubMed ID: 16530096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian wavelet based dynamic filtering (GWDF) method for medical ultrasound systems.
    Wang P; Shen Y; Wang Q
    Ultrasonics; 2007 May; 46(2):168-76. PubMed ID: 17363023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
    Wygant IO; Zhuang X; Yeh DT; Oralkan O; Sanli Ergun A; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):327-42. PubMed ID: 18334340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.