BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17703878)

  • 1. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F; Clack HL
    J Hazard Mater; 2008 Apr; 152(2):616-23. PubMed ID: 17703878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.
    Takahashi F; Kida A; Shimaoka T
    Sci Total Environ; 2010 Oct; 408(22):5472-7. PubMed ID: 20713298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.
    Clack HL
    Environ Sci Technol; 2012 Jul; 46(13):7327-33. PubMed ID: 22663136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD; Sollenberg H; Westas H
    Sci Total Environ; 2003 Mar; 304(1-3):137-44. PubMed ID: 12663178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
    Clack HL
    Environ Sci Technol; 2009 Mar; 43(5):1460-6. PubMed ID: 19350920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
    Clack HL
    J Air Waste Manag Assoc; 2017 Aug; 67(8):881-888. PubMed ID: 28287914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon.
    Mei Z; Shen Z; Zhao Q; Wang W; Zhang Y
    J Hazard Mater; 2008 Apr; 152(2):721-9. PubMed ID: 17765397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Mercury Removal by Sorbent Injection.
    Meserole FB; Chang R; Carey TR; Machac J; Richardson CF
    J Air Waste Manag Assoc; 1999 Jun; 49(6):694-704. PubMed ID: 26355373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.
    George KV; Manjunath S; Rao CV; Bopche AM
    Environ Technol; 2003 Nov; 24(11):1425-30. PubMed ID: 14733395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.
    Fuente-Cuesta A; Diaz-Somoano M; Lopez-Anton MA; Cieplik M; Fierro JL; Martínez-Tarazona MR
    J Environ Manage; 2012 May; 98():23-8. PubMed ID: 22325640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.
    Flora JR; Hargis RA; O'Dowd WJ; Karash A; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2006 Mar; 56(3):343-9. PubMed ID: 16573197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands.
    Meij R; te Winkel H
    Sci Total Environ; 2006 Sep; 368(1):393-6. PubMed ID: 16289297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H; Wang X; Wang WN; Biswas P
    J Air Waste Manag Assoc; 2015 Apr; 65(4):455-65. PubMed ID: 25947215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J; Wang W; Xu W; Wang X; Zhao S
    J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of mercury capture by sorbent injection using a simplified model.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2009 Oct; 170(2-3):1179-85. PubMed ID: 19541417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrochemical system for removing and recovering elemental mercury from a gas stream.
    Bolger PT; Szlag DC
    Environ Sci Technol; 2002 Oct; 36(20):4430-5. PubMed ID: 12387419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.