BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17703878)

  • 21. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.
    Li H; Zhu L; Wang J; Li L; Shih K
    Environ Sci Technol; 2016 Sep; 50(17):9551-7. PubMed ID: 27508312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.
    Boylan HM; Cain RD; Kingston HM
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1318-25. PubMed ID: 14649751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.
    Li Y; Suriyawong A; Daukoru M; Zhuang Y; Biswas P
    J Air Waste Manag Assoc; 2009 May; 59(5):553-9. PubMed ID: 19583155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binary mineral sulfides sorbent with wide temperature range for rapid elemental mercury uptake from coal combustion flue gas.
    Wang S; Yang Z; Zhao J; Li H; Yang J; Song J; Guo X
    Environ Technol; 2021 Jan; 42(1):160-169. PubMed ID: 31928335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4373-8. PubMed ID: 11718360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants.
    Ochoa-González R; Córdoba P; Díaz-Somoano M; Font O; López-Antón MA; Leiva C; Martínez-Tarazona MR; Querol X; Pereira CF; Tomás A; Gómez P; Mesado P
    Chemosphere; 2011 Oct; 85(4):565-70. PubMed ID: 21764100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.
    Cao Y; Zhou H; Jiang W; Chen CW; Pan WP
    Environ Sci Technol; 2010 May; 44(9):3429-34. PubMed ID: 20380437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM; MacLean LC; Hu Y; Xu Z
    Environ Sci Technol; 2012 Nov; 46(21):12186-93. PubMed ID: 23020596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of mercury vapor emissions from combustion flue gas.
    Yan R; Liang DT; Tay JH
    Environ Sci Pollut Res Int; 2003; 10(6):399-407. PubMed ID: 14690030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes.
    Clack HL
    J Air Waste Manag Assoc; 2006 Jun; 56(6):759-66. PubMed ID: 16805400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The application of regenerable sorbents for mercury capture in gas phase.
    Lopez-Anton MA; Fernández-Miranda N; Martínez-Tarazona MR
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24495-24503. PubMed ID: 27604126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle size distribution effects on gas-particle mass transfer within electrostatic precipitators.
    Clack HL
    Environ Sci Technol; 2006 Jun; 40(12):3929-33. PubMed ID: 16830563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The thief process for mercury removal from flue gas.
    Granite EJ; Freeman MC; Hargis RA; O'Dowd WJ; Pennline HW
    J Environ Manage; 2007 Sep; 84(4):628-34. PubMed ID: 16959396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
    Chi Y; Yan N; Qu Z; Qiao S; Jia J
    J Hazard Mater; 2009 Jul; 166(2-3):776-81. PubMed ID: 19153004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
    Lee JY; Ju Y; Keener TC; Varma RS
    Environ Sci Technol; 2006 Apr; 40(8):2714-20. PubMed ID: 16683613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.