These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17703942)

  • 1. Step length and required friction in walking.
    Cooper RC; Prebeau-Menezes LM; Butcher MT; Bertram JE
    Gait Posture; 2008 May; 27(4):547-51. PubMed ID: 17703942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking.
    Burnfield JM; Powers CM
    J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology to quantify the stochastic distribution of friction coefficient required for level walking.
    Chang WR; Chang CC; Matz S; Lesch MF
    Appl Ergon; 2008 Nov; 39(6):766-71. PubMed ID: 18187104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.
    Tsai YJ; Powers CM
    Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability.
    Burnfield JM; Tsai YJ; Powers CM
    Gait Posture; 2005 Aug; 22(1):82-8. PubMed ID: 15996597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pain distribution on gait characteristics in patients with low back pain: part 1: vertical ground reaction force.
    Lee CE; Simmonds MJ; Etnyre BR; Morris GS
    Spine (Phila Pa 1976); 2007 May; 32(12):1329-36. PubMed ID: 17515822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of similar speed's walking and functional classification of foot contact on variability of the vertical ground reaction force].
    Lefèvre B; Thévenon A; Moretto P
    Ann Readapt Med Phys; 2004 May; 47(4):164-8. PubMed ID: 15130714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting slips and falls considering required and available friction.
    Hanson JP; Redfern MS; Mazumdar M
    Ergonomics; 1999 Dec; 42(12):1619-33. PubMed ID: 10643404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilized coefficient of friction during walking: static estimates exceed measured values.
    Powers CM; Burnfield JM; Lim P; Brault JM; Flynn JE
    J Forensic Sci; 2002 Nov; 47(6):1303-8. PubMed ID: 12455654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid gait termination: effects of age, walking surfaces and footwear characteristics.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    Gait Posture; 2009 Jul; 30(1):65-70. PubMed ID: 19359178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of obesity on the biomechanics of walking at different speeds.
    Browning RC; Kram R
    Med Sci Sports Exerc; 2007 Sep; 39(9):1632-41. PubMed ID: 17805097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal characteristics of spontaneous overground walk-to-run transition.
    De Smet K; Segers V; Lenoir M; De Clercq D
    Gait Posture; 2009 Jan; 29(1):54-8. PubMed ID: 18760925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the complete ground reaction forces with pressure insoles in walking.
    Fong DT; Chan YY; Hong Y; Yung PS; Fung KY; Chan KM
    J Biomech; 2008 Aug; 41(11):2597-601. PubMed ID: 18571656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in the foot-ground clearance and step timing of young and older men during single-task and dual-task treadmill walking.
    Sparrow WA; Begg RK; Parker S
    Gait Posture; 2008 Nov; 28(4):563-7. PubMed ID: 18486476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepping over obstacles of different heights and varied shoe traction alter the kinetic strategies of the leading limb.
    Houser JJ; Decker L; Stergiou N
    Ergonomics; 2008 Dec; 51(12):1847-59. PubMed ID: 18608479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT; Mao DW; Li JX; Hong Y
    J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between footswitch and ground reaction force techniques for identifying gait events: inter-session repeatability and the effect of walking speed.
    Mills PM; Barrett RS; Morrison S
    Gait Posture; 2007 Jul; 26(2):323-6. PubMed ID: 17079145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.