These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17704153)

  • 1. Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants.
    Gunawardena J
    Biophys J; 2007 Dec; 93(11):3828-34. PubMed ID: 17704153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The geometry of multisite phosphorylation.
    Manrai AK; Gunawardena J
    Biophys J; 2008 Dec; 95(12):5533-43. PubMed ID: 18849417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical reaction systems with toric steady states.
    Pérez Millán M; Dickenstein A; Shiu A; Conradi C
    Bull Math Biol; 2012 May; 74(5):1027-65. PubMed ID: 21989565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions.
    Salazar C; Höfer T
    Biosystems; 2006; 83(2-3):195-206. PubMed ID: 16233950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Site phosphorylation systems with 2n-1 steady states.
    Flockerzi D; Holstein K; Conradi C
    Bull Math Biol; 2014 Aug; 76(8):1892-916. PubMed ID: 25033781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior.
    Huang Q; Qian H
    Chaos; 2009 Sep; 19(3):033109. PubMed ID: 19791989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.
    Dexter JP; Dasgupta T; Gunawardena J
    Integr Biol (Camb); 2015 Aug; 7(8):883-94. PubMed ID: 26021467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray analysis of fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase.
    Istvan ES; Hasemann CA; Kurumbail RG; Uyeda K; Deisenhofer J
    Protein Sci; 1995 Nov; 4(11):2439-41. PubMed ID: 8563644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic and fluorescence studies of four single-tryptophan mutants of rat testis fructose 6-phosphate,2-kinase:fructose 2,6-bisphosphatase.
    Watanabe F; Jameson DM; Uyeda K
    Protein Sci; 1996 May; 5(5):904-13. PubMed ID: 8732762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutants of rat testis fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase: localization of conformational alterations induced by ligand binding.
    Helms MK; Hazlett TL; Mizuguchi H; Hasemann CA; Uyeda K; Jameson DM
    Biochemistry; 1998 Oct; 37(40):14057-64. PubMed ID: 9760241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human E1 enzyme and its complex with a substrate analog reveals the mechanism of its phosphatase/enolase activity.
    Wang H; Pang H; Bartlam M; Rao Z
    J Mol Biol; 2005 May; 348(4):917-26. PubMed ID: 15843022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible unfolding of fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase.
    Tominaga N; Jameson DM; Uyeda K
    Protein Sci; 1994 Aug; 3(8):1245-52. PubMed ID: 7987219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic responses in multi-site phosphorylation systems.
    Suwanmajo T; Krishnan J
    J R Soc Interface; 2013 Dec; 10(89):20130742. PubMed ID: 24108693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions.
    Salazar C; Höfer T
    FEBS J; 2007 Feb; 274(4):1046-61. PubMed ID: 17257173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.
    Straube R
    PLoS Comput Biol; 2014 May; 10(5):e1003614. PubMed ID: 24809699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation of a coupled mechanism between solute diffusion, phosphatase-kinase reactions and membrane potentials for the primary active transport of phosphorylated substrates through biological membranes.
    Maïsterrena B; Fiaty K; Charcosset C; Perrin B; Couturier R; West IC
    Prog Biophys Mol Biol; 2002 Nov; 80(3):109-37. PubMed ID: 12379268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of ascorbic acid 2-kinase from Flavobacterium devorans ATCC 10829.
    Jung Ahn M; Young Moon J; Ook Kang D; Cho YK
    Biochimie; 2004 Feb; 86(2):151-6. PubMed ID: 15016454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo.
    Yang Z; Liang G; Wang L; Xu B
    J Am Chem Soc; 2006 Mar; 128(9):3038-43. PubMed ID: 16506785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of the active transport of a neutral solute based on a kinase-channel-phosphatase topology.
    Fiaty K; Charcosset C; Perrin B; Couturier R; Maïsterrena B
    J Comput Chem; 2005 Feb; 26(3):201-13. PubMed ID: 15599952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An information theoretical analysis of kinase activated phosphorylation dephosphorylation cycle.
    Qian H; Roy S
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):289-95. PubMed ID: 22334038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.