BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17704158)

  • 1. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor.
    Tay LH; Griesbeck O; Yue DT
    Biophys J; 2007 Dec; 93(11):4031-40. PubMed ID: 17704158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores.
    Laine R; Stuckey DW; Manning H; Warren SC; Kennedy G; Carling D; Dunsby C; Sardini A; French PM
    PLoS One; 2012; 7(11):e49200. PubMed ID: 23152874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change.
    Mank M; Reiff DF; Heim N; Friedrich MW; Borst A; Griesbeck O
    Biophys J; 2006 Mar; 90(5):1790-6. PubMed ID: 16339891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.
    Sauer B; Tian Q; Lipp P; Kaestner L
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1328-32. PubMed ID: 25447281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Imaging of Ca
    Rakymzhan A; Radbruch H; Niesner RA
    Adv Exp Med Biol; 2017; 1035():135-141. PubMed ID: 29080135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.
    Bazzazi H; Sang L; Dick IE; Joshi-Mukherjee R; Yang W; Yue DT
    J Physiol; 2015 Sep; 593(17):3865-84. PubMed ID: 26096996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dynamic range in a genetically encoded Ca2+ sensor.
    Liu S; He J; Jin H; Yang F; Lu J; Yang J
    Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging.
    Niino Y; Hotta K; Oka K
    PLoS One; 2010 Feb; 5(2):e9164. PubMed ID: 20161796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative measurement of Ca(2+)-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells.
    Mori MX; Imai Y; Itsuki K; Inoue R
    Biochemistry; 2011 May; 50(21):4685-96. PubMed ID: 21517110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy.
    Adachi T; Tsubata T
    Biochem Biophys Res Commun; 2008 Mar; 367(2):377-82. PubMed ID: 18167311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL.
    Geiger A; Russo L; Gensch T; Thestrup T; Becker S; Hopfner KP; Griesinger C; Witte G; Griesbeck O
    Biophys J; 2012 May; 102(10):2401-10. PubMed ID: 22677394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2+ sparks and Ca2+ waves in cardiac myocytes.
    Yang D; Zhu WZ; Xiao B; Brochet DX; Chen SR; Lakatta EG; Xiao RP; Cheng H
    Circ Res; 2007 Feb; 100(3):399-407. PubMed ID: 17234969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calmodulin regulation of excitation-contraction coupling in cardiac myocytes.
    Yang D; Song LS; Zhu WZ; Chakir K; Wang W; Wu C; Wang Y; Xiao RP; Chen SR; Cheng H
    Circ Res; 2003 Apr; 92(6):659-67. PubMed ID: 12609973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes.
    Maier LS; Ziolo MT; Bossuyt J; Persechini A; Mestril R; Bers DM
    J Mol Cell Cardiol; 2006 Sep; 41(3):451-8. PubMed ID: 16765983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation.
    Derler I; Hofbauer M; Kahr H; Fritsch R; Muik M; Kepplinger K; Hack ME; Moritz S; Schindl R; Groschner K; Romanin C
    J Physiol; 2006 Nov; 577(Pt 1):31-44. PubMed ID: 16959851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.
    Krebs M; Held K; Binder A; Hashimoto K; Den Herder G; Parniske M; Kudla J; Schumacher K
    Plant J; 2012 Jan; 69(1):181-92. PubMed ID: 21910770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes.
    Prorok J; Kovács PP; Kristóf AA; Nagy N; Tombácz D; Tóth JS; Ordög B; Jost N; Virág L; Papp JG; Varró A; Tóth A; Boldogkoi Z
    J Biomed Biotechnol; 2009; 2009():361795. PubMed ID: 19636419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes of the Ca(2+) regulatory site of the Na(+)-Ca(2+) exchanger detected by FRET.
    Ottolia M; Philipson KD; John S
    Biophys J; 2004 Aug; 87(2):899-906. PubMed ID: 15298897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-penetrating nanobiosensors for pointillistic intracellular Ca2+-transient detection.
    Zamaleeva AI; Collot M; Bahembera E; Tisseyre C; Rostaing P; Yakovlev AV; Oheim M; de Waard M; Mallet JM; Feltz A
    Nano Lett; 2014 Jun; 14(6):2994-3001. PubMed ID: 24754795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the response of calcium signal transducers to generated calcium transients.
    Davis JP; Tikunova SB; Walsh MP; Johnson JD
    Biochemistry; 1999 Mar; 38(13):4235-44. PubMed ID: 10194340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.