These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 17704162)
1. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Montes LR; Alonso A; Goñi FM; Bagatolli LA Biophys J; 2007 Nov; 93(10):3548-54. PubMed ID: 17704162 [TBL] [Abstract][Full Text] [Related]
2. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393 [TBL] [Abstract][Full Text] [Related]
3. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270 [TBL] [Abstract][Full Text] [Related]
4. Giant unilamellar vesicle electroformation from lipid mixtures to native membranes under physiological conditions. Méléard P; Bagatolli LA; Pott T Methods Enzymol; 2009; 465():161-76. PubMed ID: 19913167 [TBL] [Abstract][Full Text] [Related]
5. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657 [TBL] [Abstract][Full Text] [Related]
6. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440 [TBL] [Abstract][Full Text] [Related]
7. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems. Wesołowska O; Michalak K; Maniewska J; Hendrich AB Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805 [TBL] [Abstract][Full Text] [Related]
8. Electroformation of giant unilamellar vesicles in saline solution. Li Q; Wang X; Ma S; Zhang Y; Han X Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225 [TBL] [Abstract][Full Text] [Related]
9. Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Scherfeld D; Kahya N; Schwille P Biophys J; 2003 Dec; 85(6):3758-68. PubMed ID: 14645066 [TBL] [Abstract][Full Text] [Related]
10. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Kahya N Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961 [TBL] [Abstract][Full Text] [Related]
11. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles. Bagatolli LA; Needham D Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023 [TBL] [Abstract][Full Text] [Related]
12. Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles. Li L; Cheng JX Biochemistry; 2006 Oct; 45(39):11819-26. PubMed ID: 17002282 [TBL] [Abstract][Full Text] [Related]
13. Micron-sized domains in quasi single-component giant vesicles. Knorr RL; Steinkühler J; Dimova R Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995 [TBL] [Abstract][Full Text] [Related]
14. AC-electric field dependent electroformation of giant lipid vesicles. Politano TJ; Froude VE; Jing B; Zhu Y Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284 [TBL] [Abstract][Full Text] [Related]