These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17704175)

  • 21. A conserved ring of charge in mammalian Na+ channels: a molecular regulator of the outer pore conformation during slow inactivation.
    Xiong W; Farukhi YZ; Tian Y; Disilvestre D; Li RA; Tomaselli GF
    J Physiol; 2006 Nov; 576(Pt 3):739-54. PubMed ID: 16873407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation as a new regulatory mechanism for neuronal Kv7 channels.
    Jensen HS; Grunnet M; Olesen SP
    Biophys J; 2007 Apr; 92(8):2747-56. PubMed ID: 17237198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.
    Conti L; Renhorn J; Gabrielsson A; Turesson F; Liin SI; Lindahl E; Elinder F
    Sci Rep; 2016 Jun; 6():27562. PubMed ID: 27278891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening.
    Hou P; Eldstrom J; Shi J; Zhong L; McFarland K; Gao Y; Fedida D; Cui J
    Nat Commun; 2017 Nov; 8(1):1730. PubMed ID: 29167462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics.
    Grunnet M; Olesen SP; Klaerke DA; Jespersen T
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1146-53. PubMed ID: 15707997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels.
    Struyk AF; Cannon SC
    J Gen Physiol; 2002 Oct; 120(4):509-16. PubMed ID: 12356853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell.
    Kerst G; Brousos H; Schreiber R; Nitschke R; Hug MJ; Greger R; Bleich M
    J Membr Biol; 2002 Mar; 186(2):89-100. PubMed ID: 11944086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges.
    Hammami S; Willumsen NJ; Meinild AK; Klaerke DA; Novak I
    Acta Physiol (Oxf); 2013 Mar; 207(3):503-15. PubMed ID: 22805606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore.
    Boccaccio A; Conti F; Olivera BM; Terlau H
    J Gen Physiol; 2004 Jul; 124(1):71-81. PubMed ID: 15226365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negatively charged residues in the N-terminal of the AID helix confer slow voltage dependent inactivation gating to CaV1.2.
    Dafi O; Berrou L; Dodier Y; Raybaud A; Sauvé R; Parent L
    Biophys J; 2004 Nov; 87(5):3181-92. PubMed ID: 15339810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.
    Meisel E; Tobelaim W; Dvir M; Haitin Y; Peretz A; Attali B
    Channels (Austin); 2018 Jan; 12(1):89-99. PubMed ID: 29451064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An intersubunit salt bridge near the selectivity filter stabilizes the active state of Kir1.1.
    Sackin H; Nanazashvili M; Li H; Palmer LG; Walters DE
    Biophys J; 2009 Aug; 97(4):1058-66. PubMed ID: 19686653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage-dependent C-type inactivation in a constitutively open K+ channel.
    Panaghie G; Purtell K; Tai KK; Abbott GW
    Biophys J; 2008 Sep; 95(6):2759-78. PubMed ID: 18567635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility.
    Liin SI; Barro-Soria R; Larsson HP
    J Physiol; 2015 Jun; 593(12):2605-15. PubMed ID: 25653179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of external K+ sensitivity of KCNQ1 channels.
    Abrahamyan A; Eldstrom J; Sahakyan H; Karagulyan N; Mkrtchyan L; Karapetyan T; Sargsyan E; Kneussel M; Nazaryan K; Schwarz JR; Fedida D; Vardanyan V
    J Gen Physiol; 2023 May; 155(5):. PubMed ID: 36809486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactivation of voltage-gated cardiac K+ channels.
    Rasmusson RL; Morales MJ; Wang S; Liu S; Campbell DL; Brahmajothi MV; Strauss HC
    Circ Res; 1998 Apr; 82(7):739-50. PubMed ID: 9562433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic resonance in a biological motor under complex fluctuations.
    Chang CH; Tsong TY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021914. PubMed ID: 14995498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.