BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17704216)

  • 1. MicroRNA-mediated regulation of stomatal development in Arabidopsis.
    Kutter C; Schöb H; Stadler M; Meins F; Si-Ammour A
    Plant Cell; 2007 Aug; 19(8):2417-29. PubMed ID: 17704216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    Yang K; Jiang M; Le J
    J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR824/AGAMOUS-LIKE16 Module Integrates Recurring Environmental Heat Stress Changes to Fine-Tune Poststress Development.
    Szaker HM; Darkó É; Medzihradszky A; Janda T; Liu HC; Charng YY; Csorba T
    Front Plant Sci; 2019; 10():1454. PubMed ID: 31824525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement.
    Zhao PX; Miao ZQ; Zhang J; Chen SY; Liu QQ; Xiang CB
    J Exp Bot; 2020 Oct; 71(19):6092-6106. PubMed ID: 32594177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana.
    de Meaux J; Hu JY; Tartler U; Goebel U
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8994-9. PubMed ID: 18579782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis.
    Hu JY; Zhou Y; He F; Dong X; Liu LY; Coupland G; Turck F; de Meaux J
    Plant Cell; 2014 May; 26(5):2024-2037. PubMed ID: 24876250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal development and pattern controlled by a MAPKK kinase.
    Bergmann DC; Lukowitz W; Somerville CR
    Science; 2004 Jun; 304(5676):1494-7. PubMed ID: 15178800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time.
    Dong X; Zhang LP; Tang YH; Yu D; Cheng F; Dong YX; Jiang XD; Qian FM; Guo ZH; Hu JY
    Plant Physiol; 2023 May; 192(1):154-169. PubMed ID: 36721922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types.
    Triviño M; Martín-Trillo M; Ballesteros I; Delgado D; de Marcos A; Desvoyes B; Gutiérrez C; Mena M; Fenoll C
    Plant J; 2013 Sep; 75(5):808-22. PubMed ID: 23662679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development.
    Von Groll U; Berger D; Altmann T
    Plant Cell; 2002 Jul; 14(7):1527-39. PubMed ID: 12119372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of leaf morphogenesis by microRNAs.
    Palatnik JF; Allen E; Wu X; Schommer C; Schwab R; Carrington JC; Weigel D
    Nature; 2003 Sep; 425(6955):257-63. PubMed ID: 12931144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.
    Hara K; Yokoo T; Kajita R; Onishi T; Yahata S; Peterson KM; Torii KU; Kakimoto T
    Plant Cell Physiol; 2009 Jun; 50(6):1019-31. PubMed ID: 19435754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Termination of asymmetric cell division and differentiation of stomata.
    Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU
    Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microRNA pathway genes AGO1, HEN1 and HYL1 participate in leaf proximal-distal, venation and stomatal patterning in Arabidopsis.
    Jover-Gil S; Candela H; Robles P; Aguilera V; Barrero JM; Micol JL; Ponce MR
    Plant Cell Physiol; 2012 Jul; 53(7):1322-33. PubMed ID: 22623415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.
    MacAlister CA; Ohashi-Ito K; Bergmann DC
    Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal patterning and differentiation by synergistic interactions of receptor kinases.
    Shpak ED; McAbee JM; Pillitteri LJ; Torii KU
    Science; 2005 Jul; 309(5732):290-3. PubMed ID: 16002616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.
    Garcia-Molina A; Andrés-Colás N; Perea-García A; Neumann U; Dodani SC; Huijser P; Peñarrubia L; Puig S
    Plant Cell Physiol; 2013 Aug; 54(8):1378-90. PubMed ID: 23766354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis.
    Lee SB; Suh MC
    Plant Cell Physiol; 2015 Jan; 56(1):48-60. PubMed ID: 25305760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots.
    Takada S; Takada N; Yoshida A
    Development; 2013 May; 140(9):1919-23. PubMed ID: 23515472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.