BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17704227)

  • 1. Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: identification of new proteins.
    Zeng X; Roh JH; Callister SJ; Tavano CL; Donohue TJ; Lipton MS; Kaplan S
    J Bacteriol; 2007 Oct; 189(20):7464-74. PubMed ID: 17704227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods.
    D'Amici GM; Rinalducci S; Murgiano L; Italiano F; Zolla L
    J Proteome Res; 2010 Jan; 9(1):192-203. PubMed ID: 19899738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides.
    Jackson PJ; Lewis HJ; Tucker JD; Hunter CN; Dickman MJ
    Mol Microbiol; 2012 Jun; 84(6):1062-78. PubMed ID: 22621241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity.
    Woronowicz K; Niederman RA
    Adv Exp Med Biol; 2010; 675():161-78. PubMed ID: 20532741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt.
    Italiano F; D'Amici GM; Rinalducci S; De Leo F; Zolla L; Gallerani R; Trotta M; Ceci LR
    Res Microbiol; 2011 Jun; 162(5):520-7. PubMed ID: 21515364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the bacterial photosynthetic apparatus.
    Tavano CL; Donohue TJ
    Curr Opin Microbiol; 2006 Dec; 9(6):625-31. PubMed ID: 17055774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the photosynthetic membranes of Rhodopseudomonas sphaeroides.
    Kaplan S; Cain BD; Donohue TJ; Shepherd WD; Yen GS
    J Cell Biochem; 1983; 22(1):15-29. PubMed ID: 6607927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. Aerobic and photosynthetic cell cultures.
    Callister SJ; Dominguez MA; Nicora CD; Zeng X; Tavano CL; Kaplan S; Donohue TJ; Smith RD; Lipton MS
    J Proteome Res; 2006 Aug; 5(8):1940-7. PubMed ID: 16889416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane.
    Niederman RA
    Mol Microbiol; 2010 May; 76(4):803-5. PubMed ID: 20412442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers.
    Woronowicz K; Sha D; Frese RN; Niederman RA
    Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes.
    Leiger K; Reisberg L; Freiberg A
    J Phys Chem B; 2013 Aug; 117(32):9315-26. PubMed ID: 23859536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Jungas C; Ranck JL; Rigaud JL; Joliot P; Verméglio A
    EMBO J; 1999 Feb; 18(3):534-42. PubMed ID: 9927413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the role of PrrA, PpsR, and FnrL in intracytoplasmic membrane differentiation of Rhodobacter sphaeroides 2.4.1 using transmission electron microscopy.
    Fedotova Y; Zeilstra-Ryalls J
    Photosynth Res; 2014 Mar; 119(3):283-90. PubMed ID: 24146256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.
    Niederman RA
    Biochim Biophys Acta; 2016 Mar; 1857(3):232-46. PubMed ID: 26519773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes.
    Callister SJ; Nicora CD; Zeng X; Roh JH; Dominguez MA; Tavano CL; Monroe ME; Kaplan S; Donohue TJ; Smith RD; Lipton MS
    J Microbiol Methods; 2006 Dec; 67(3):424-36. PubMed ID: 16828186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of the Menaquinone Biosynthetic Pathway into
    Jun D; Richardson-Sanchez T; Mahey A; Murphy MEP; Fernandez RC; Beatty JT
    ACS Synth Biol; 2020 May; 9(5):1190-1200. PubMed ID: 32271543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.
    Woronowicz K; Sha D; Frese RN; Sturgis JN; Nanda V; Niederman RA
    Metallomics; 2011 Aug; 3(8):765-74. PubMed ID: 21691621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.