BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17704390)

  • 1. Investigation of feather follicle development in embryonic geese.
    Xu RF; Wu W; Xu H
    Poult Sci; 2007 Sep; 86(9):2000-7. PubMed ID: 17704390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear model fitting analysis of feather growth and development curves in the embryonic stages of Jilin white geese (Anser cygnoides).
    Wang Y; Fu X; Wang S; Mabrouk I; Zhou Y; Song Y; Liu T; Ma J; Zhuang F; Zhang X; Xu K; Sun Y
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36371804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cells of embryonic and regenerating germinal layers within barb ridges: implication for the development, evolution and diversification of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):51-76. PubMed ID: 17283967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of key regulators driving primary feather follicle induction in goose skin.
    Hu X; Zhang X; Liu Z; Li S; Zheng X; Nie Y; Tao Y; Zhou X; Wu W; Yang G; Zhao Q; Zhang Y; Xu Q; Mou C
    Gene; 2020 Mar; 731():144338. PubMed ID: 31923576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.
    Wu W; Xu RF; Xiao L; Xu H; Gao G
    Poult Sci; 2008 Jan; 87(1):204-11. PubMed ID: 18079472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos.
    Xie WY; Chen MJ; Jiang SG; Yan HC; Wang XQ; Gao CQ
    Br Poult Sci; 2020 Oct; 61(5):557-565. PubMed ID: 32329625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follicle characteristics and follicle developmental related Wnt6 polymorphism in Chinese indigenous Wanxi-white goose.
    Chen X; Bai H; Li L; Zhang W; Jiang R; Geng Z
    Mol Biol Rep; 2012 Nov; 39(11):9843-8. PubMed ID: 22714925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biology of feather follicles.
    Yu M; Yue Z; Wu P; Wu DY; Mayer JA; Medina M; Widelitz RB; Jiang TX; Chuong CM
    Int J Dev Biol; 2004; 48(2-3):181-91. PubMed ID: 15272383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Apr; 37(1):19-41. PubMed ID: 16136726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: cornification, morphogenesis and evolution of feathers.
    Alibardi L
    Protoplasma; 2017 May; 254(3):1259-1281. PubMed ID: 27614891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: barb ridge modification in relation to feather evolution.
    Alibardi L
    Ann Anat; 2006 Jul; 188(4):303-18. PubMed ID: 16856595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell structure of developing downfeathers in the zebrafinch with emphasis on barb ridge morphogenesis.
    Alibardi L; Sawyer RH
    J Anat; 2006 May; 208(5):621-42. PubMed ID: 16637885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Assembly and Comparative Transcriptome Profiling of
    Sello CT; Liu C; Sun Y; Msuthwana P; Hu J; Sui Y; Chen S; Zhou Y; Lu H; Xu C; Sun Y; Liu J; Li S; Yang W
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31072014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of feather follicle development and Msx2 gene SNP degradation in Hungarian white goose.
    Song Y; Liu C; Zhou Y; Lin G; Xu C; Msuthwana P; Wang S; Ma J; Zhuang F; Fu X; Wang Y; Liu T; Liu Q; Wang J; Sui Y; Sun Y
    BMC Genomics; 2022 Dec; 23(1):821. PubMed ID: 36510127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model.
    Widelitz RB; Jiang TX; Chen CW; Stott NS; Jung HS; Chuong CM
    Development; 1999 Jun; 126(12):2577-87. PubMed ID: 10331970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Nov; 37(3-4):323-43. PubMed ID: 16612976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evolutionary origin of feathers.
    Prum RO
    J Exp Zool; 1999 Dec; 285(4):291-306. PubMed ID: 10578107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of FOXO3 in the skin follicles of goose embryos during embryonic development.
    Wang S; Wang Y; Ichraf M; Zhou Y; Song Y; Fu X; Liu T; Ma J; Zhuang F; Hu X; Hou J; Yu J; Yang Z; Liu F; Sun Y
    Br Poult Sci; 2023 Oct; 64(5):586-593. PubMed ID: 37334805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia.
    Yue Z; Jiang TX; Widelitz RB; Chuong CM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):951-5. PubMed ID: 16418297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.