BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17704541)

  • 1. Interacting proteins dictate function of the minimal START domain phosphatidylcholine transfer protein/StarD2.
    Kanno K; Wu MK; Agate DS; Fanelli BJ; Wagle N; Scapa EF; Ukomadu C; Cohen DE
    J Biol Chem; 2007 Oct; 282(42):30728-36. PubMed ID: 17704541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylcholine transfer protein/StarD2 promotes microvesicular steatosis and liver injury in murine experimental steatohepatitis.
    Nicholls HT; Hornick JL; Cohen DE
    Am J Physiol Gastrointest Liver Physiol; 2017 Jul; 313(1):G50-G61. PubMed ID: 28385694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PC-TP/StARD2: Of membranes and metabolism.
    Kang HW; Wei J; Cohen DE
    Trends Endocrinol Metab; 2010 Jul; 21(7):449-56. PubMed ID: 20338778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2.
    Kanno K; Wu MK; Scapa EF; Roderick SL; Cohen DE
    Biochim Biophys Acta; 2007 Jun; 1771(6):654-62. PubMed ID: 17499021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioesterase superfamily member 2 (Them2) and phosphatidylcholine transfer protein (PC-TP) interact to promote fatty acid oxidation and control glucose utilization.
    Kawano Y; Ersoy BA; Li Y; Nishiumi S; Yoshida M; Cohen DE
    Mol Cell Biol; 2014 Jul; 34(13):2396-408. PubMed ID: 24732803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.
    Ersoy BA; Tarun A; D'Aquino K; Hancer NJ; Ukomadu C; White MF; Michel T; Manning BD; Cohen DE
    Sci Signal; 2013 Jul; 6(286):ra64. PubMed ID: 23901139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioesterase superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): a homotetrameric hotdog fold thioesterase with selectivity for long-chain fatty acyl-CoAs.
    Wei J; Kang HW; Cohen DE
    Biochem J; 2009 Jun; 421(2):311-22. PubMed ID: 19405909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism.
    Kang HW; Niepel MW; Han S; Kawano Y; Cohen DE
    FASEB J; 2012 May; 26(5):2209-21. PubMed ID: 22345407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.
    Wagle N; Xian J; Shishova EY; Wei J; Glicksman MA; Cuny GD; Stein RL; Cohen DE
    Anal Biochem; 2008 Dec; 383(1):85-92. PubMed ID: 18762160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased lipid efflux and increased susceptibility to cholesterol-induced apoptosis in macrophages lacking phosphatidylcholine transfer protein.
    Baez JM; Tabas I; Cohen DE
    Biochem J; 2005 May; 388(Pt 1):57-63. PubMed ID: 15628972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress.
    Ersoy BA; Maner-Smith KM; Li Y; Alpertunga I; Cohen DE
    J Clin Invest; 2018 Jan; 128(1):141-156. PubMed ID: 29202465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein.
    Olayioye MA; Vehring S; Müller P; Herrmann A; Schiller J; Thiele C; Lindeman GJ; Visvader JE; Pomorski T
    J Biol Chem; 2005 Jul; 280(29):27436-42. PubMed ID: 15911624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain.
    Feng L; Chan WW; Roderick SL; Cohen DE
    Biochemistry; 2000 Dec; 39(50):15399-409. PubMed ID: 11112525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylcholine transfer protein promotes apolipoprotein A-I-mediated lipid efflux in Chinese hamster ovary cells.
    Baez JM; Barbour SE; Cohen DE
    J Biol Chem; 2002 Feb; 277(8):6198-206. PubMed ID: 11751880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure.
    Krisko TI; LeClair KB; Cohen DE
    Metabolism; 2017 Mar; 68():145-149. PubMed ID: 28183446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA cloning and tissue-specific expression of the phosphatidylcholine transfer protein gene.
    Geijtenbeek TB; Smith AJ; Borst P; Wirtz KW
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):49-55. PubMed ID: 8645232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding of phosphatidylcholine to the phosphatidylcholine transfer protein: affinity and role in folding.
    de Brouwer AP; Bouma B; van Tiel CM; Heerma W; Brouwers JF; Bevers LE; Westerman J; Roelofsen B; Wirtz KW
    Chem Phys Lipids; 2001 Aug; 112(2):109-19. PubMed ID: 11551535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acceptor membrane phosphatidylcholine on the catalytic activity of bovine liver phosphatidylcholine transfer protein.
    Runquist EA; Helmkamp GM
    Biochim Biophys Acta; 1988 May; 940(1):21-32. PubMed ID: 3284590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of human phosphatidylcholine transfer protein in complex with its ligand.
    Roderick SL; Chan WW; Agate DS; Olsen LR; Vetting MW; Rajashankar KR; Cohen DE
    Nat Struct Biol; 2002 Jul; 9(7):507-11. PubMed ID: 12055623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.
    Scapa EF; Pocai A; Wu MK; Gutierrez-Juarez R; Glenz L; Kanno K; Li H; Biddinger S; Jelicks LA; Rossetti L; Cohen DE
    FASEB J; 2008 Jul; 22(7):2579-90. PubMed ID: 18347010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.