These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17704570)

  • 1. Microscale vapour diffusion for protein crystallization.
    Korczyńska J; Hu TC; Smith DK; Jenkins J; Lewis R; Edwards T; Brzozowski AM
    Acta Crystallogr D Biol Crystallogr; 2007 Sep; 63(Pt 9):1009-15. PubMed ID: 17704570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.
    Hiraki M; Kato R; Nagai M; Satoh T; Hirano S; Ihara K; Kudo N; Nagae M; Kobayashi M; Inoue M; Uejima T; Oda S; Chavas LM; Akutsu M; Yamada Y; Kawasaki M; Matsugaki N; Igarashi N; Suzuki M; Wakatsuki S
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1058-65. PubMed ID: 16929107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.
    Cherezov V; Peddi A; Muthusubramaniam L; Zheng YF; Caffrey M
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1795-807. PubMed ID: 15388926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology.
    Stock D; Perisic O; Löwe J
    Prog Biophys Mol Biol; 2005 Jul; 88(3):311-27. PubMed ID: 15652247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated systems for protein crystallization.
    Bard J; Ercolani K; Svenson K; Olland A; Somers W
    Methods; 2004 Nov; 34(3):329-47. PubMed ID: 15325651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization.
    Walter TS; Diprose JM; Mayo CJ; Siebold C; Pickford MG; Carter L; Sutton GC; Berrow NS; Brown J; Berry IM; Stewart-Jones GB; Grimes JM; Stammers DK; Esnouf RM; Jones EY; Owens RJ; Stuart DI; Harlos K
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):651-7. PubMed ID: 15930615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for separating nucleation and growth in protein crystallisation.
    Chayen NE
    Prog Biophys Mol Biol; 2005 Jul; 88(3):329-37. PubMed ID: 15652248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanovolume crystallization robot that creates its crystallization screens on-the-fly.
    Hazes B; Price L
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1165-71. PubMed ID: 16041083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal growth in X-ray-transparent plastic tubing: an alternative for high-throughput applications.
    Kalinin Y; Thorne R
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1528-32. PubMed ID: 16239731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and optimization methods for nonautomated crystallization laboratories.
    Bergfors T
    Methods Mol Biol; 2007; 363():131-51. PubMed ID: 17272840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL; Classen S; Berger JM; Quake SR
    J Am Chem Soc; 2006 Mar; 128(10):3142-3. PubMed ID: 16522084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ study of nanotemplate-induced growth of lysozyme microcrystals by submicrometer GISAXS.
    Pechkova E; Nicolini C
    J Synchrotron Radiat; 2011 Mar; 18(Pt 2):287-92. PubMed ID: 21335918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The open-access high-throughput crystallization facility at EMBL Hamburg.
    Mueller-Dieckmann J
    Acta Crystallogr D Biol Crystallogr; 2006 Dec; 62(Pt 12):1446-52. PubMed ID: 17139079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization techniques for automation and high throughput.
    Chayen NE
    Methods Mol Biol; 2007; 363():175-90. PubMed ID: 17272842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phoenito experiments: combining the strengths of commercial crystallization automation.
    Newman J; Pham TM; Peat TS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Nov; 64(Pt 11):991-6. PubMed ID: 18997323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified vapor-diffusion crystallization protocol that uses a common dehydrating agent.
    Dunlop KV; Hazes B
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1041-8. PubMed ID: 16041068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On increasing protein-crystallization throughput for X-ray diffraction studies.
    Shah AK; Liu ZJ; Stewart PD; Schubot FD; Rose JP; Newton MG; Wang BC
    Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):123-9. PubMed ID: 15681862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automation of protein crystallization trials: use of a robot to deliver reagents to a novel multi-chamber vapor diffusion plate.
    Morris DW; Kim CY; McPherson A
    Biotechniques; 1989 May; 7(5):522-7. PubMed ID: 2633794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films.
    Cipriani F; Röwer M; Landret C; Zander U; Felisaz F; Márquez JA
    Acta Crystallogr D Biol Crystallogr; 2012 Oct; 68(Pt 10):1393-9. PubMed ID: 22993093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.