BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17704892)

  • 1. Functional proteomics to identify critical proteins in signal transduction pathways.
    Yan GR; He QY
    Amino Acids; 2008 Aug; 35(2):267-74. PubMed ID: 17704892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology.
    Yan G; Li L; Tao Y; Liu S; Liu Y; Luo W; Wu Y; Tang M; Dong Z; Cao Y
    Proteomics; 2006 Mar; 6(6):1810-21. PubMed ID: 16470631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epstein-Barr virus latent membrane protein 1 mediates phosphorylation and nuclear translocation of annexin A2 by activating PKC pathway.
    Yan G; Luo W; Lu Z; Luo X; Li L; Liu S; Liu Y; Tang M; Dong Z; Cao Y
    Cell Signal; 2007 Feb; 19(2):341-8. PubMed ID: 16989986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho-proteomic analysis of cellular signaling.
    de Graauw M; Hensbergen P; van de Water B
    Electrophoresis; 2006 Jul; 27(13):2676-86. PubMed ID: 16739229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Epstein-Barr virus-encoded latent membrane protein 1 mediates serine-phosphorylation of annexin I by activating protein kinase C].
    Yan GR; Luo W; Luo XJ; Cao Y
    Ai Zheng; 2007 Jul; 26(7):679-82. PubMed ID: 17626739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epstein-Barr virus latent membrane protein 1 mediates serine 25 phosphorylation and nuclear entry of annexin A2 via PI-PLC-PKCalpha/PKCbeta pathway.
    Luo W; Yan G; Li L; Wang Z; Liu H; Zhou S; Liu S; Tang M; Yi W; Dong Z; Cao Y
    Mol Carcinog; 2008 Dec; 47(12):934-46. PubMed ID: 18412141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network.
    Morandell S; Stasyk T; Skvortsov S; Ascher S; Huber LA
    Proteomics; 2008 Nov; 8(21):4383-401. PubMed ID: 18846509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteomic approaches to elucidate cellular signaling networks.
    Schmelzle K; White FM
    Curr Opin Biotechnol; 2006 Aug; 17(4):406-14. PubMed ID: 16806894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomics strategies for the functional analysis of signal transduction.
    Morandell S; Stasyk T; Grosstessner-Hain K; Roitinger E; Mechtler K; Bonn GK; Huber LA
    Proteomics; 2006 Jul; 6(14):4047-56. PubMed ID: 16791829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics.
    Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA
    Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation and nuclear translocation of STAT3 regulated by the Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma.
    Liu YP; Tan YN; Wang ZL; Zeng L; Lu ZX; Li LL; Luo W; Tang M; Cao Y
    Int J Mol Med; 2008 Feb; 21(2):153-62. PubMed ID: 18204781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineating signal transduction pathways in smooth muscle through focused proteomics.
    Hagerty L; Haystead TA
    Expert Rev Proteomics; 2006 Feb; 3(1):75-85. PubMed ID: 16445352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics in analyzing signaling pathways.
    Mukherji M
    Expert Rev Proteomics; 2005 Jan; 2(1):117-28. PubMed ID: 15966857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks.
    de la Fuente van Bentem S; Mentzen WI; de la Fuente A; Hirt H
    Proteomics; 2008 Nov; 8(21):4453-65. PubMed ID: 18972525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.
    Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC
    J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics and phosphoproteomics for the mapping of cellular signalling networks.
    Preisinger C; von Kriegsheim A; Matallanas D; Kolch W
    Proteomics; 2008 Nov; 8(21):4402-15. PubMed ID: 18846508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1.
    Zhang M; Riedel H
    J Cell Biochem; 2009 May; 107(1):65-75. PubMed ID: 19277985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.
    Choudhary C; Olsen JV; Brandts C; Cox J; Reddy PN; Böhmer FD; Gerke V; Schmidt-Arras DE; Berdel WE; Müller-Tidow C; Mann M; Serve H
    Mol Cell; 2009 Oct; 36(2):326-39. PubMed ID: 19854140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics approaches to understand protein phosphorylation in pathway modulation.
    Schulze WX
    Curr Opin Plant Biol; 2010 Jun; 13(3):280-87. PubMed ID: 20097120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.