BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17705319)

  • 1. Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites.
    Arendt Y; Bhaumik A; Del Conte R; Luchinat C; Mori M; Porcu M
    ChemMedChem; 2007 Nov; 2(11):1648-54. PubMed ID: 17705319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of S100 proteins with the antiallergic drugs, olopatadine, amlexanox, and cromolyn: identification of putative drug binding sites on S100A1 protein.
    Okada M; Tokumitsu H; Kubota Y; Kobayashi R
    Biochem Biophys Res Commun; 2002 Apr; 292(4):1023-30. PubMed ID: 11944917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands.
    Agamennone M; Cesari L; Lalli D; Turlizzi E; Del Conte R; Turano P; Mangani S; Padova A
    ChemMedChem; 2010 Mar; 5(3):428-35. PubMed ID: 20077460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional solution structure of a unique S100 protein.
    Sivaraja V; Kumar TK; Prudovsky I; Yu C
    Biochem Biophys Res Commun; 2005 Oct; 335(4):1140-8. PubMed ID: 16122705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins.
    Wissler JH
    Ann N Y Acad Sci; 2004 Jun; 1022():163-84. PubMed ID: 15251957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure study on human S100A13 at 2.0 A resolution.
    Li M; Zhang PF; Pan XW; Chang WR
    Biochem Biophys Res Commun; 2007 May; 356(3):616-21. PubMed ID: 17374362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin.
    Mäler L; Sastry M; Chazin WJ
    J Mol Biol; 2002 Mar; 317(2):279-90. PubMed ID: 11902843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2.
    Rintala-Dempsey AC; Santamaria-Kisiel L; Liao Y; Lajoie G; Shaw GS
    Biochemistry; 2006 Dec; 45(49):14695-705. PubMed ID: 17144662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53.
    van Dieck J; Teufel DP; Jaulent AM; Fernandez-Fernandez MR; Rutherford TJ; Wyslouch-Cieszynska A; Fersht AR
    J Mol Biol; 2009 Dec; 394(5):922-30. PubMed ID: 19819244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor.
    Rani SG; Mohan SK; Yu C
    Biochemistry; 2010 Mar; 49(11):2585-92. PubMed ID: 20178375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational screening and design of S100B ligand to block S100B-p53 interaction.
    Whitlow JL; Varughese JF; Zhou Z; Bartolotti LJ; Li Y
    J Mol Graph Model; 2009; 27(8):969-77. PubMed ID: 19324580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amide exchange shows calcium-induced conformational changes are transmitted to the dimer interface of S100B.
    Marlatt NM; Shaw GS
    Biochemistry; 2007 Jun; 46(25):7478-87. PubMed ID: 17536784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Ca2+ -free S100A2 at 1.6-A resolution.
    Koch M; Diez J; Fritz G
    J Mol Biol; 2008 May; 378(4):933-42. PubMed ID: 18394645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of monomeric S100B and S100A11 proteins at low ionic strength.
    Marlatt NM; Boys BL; Konermann L; Shaw GS
    Biochemistry; 2009 Mar; 48(9):1954-63. PubMed ID: 19216510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a dimeric intermediate in the unfolding pathway for the calcium-binding protein S100B.
    Shaw GS; Marlatt NM; Ferguson PL; Barber KR; Bottomley SP
    J Mol Biol; 2008 Oct; 382(4):1075-88. PubMed ID: 18706914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S100-annexin complexes--structural insights.
    Rintala-Dempsey AC; Rezvanpour A; Shaw GS
    FEBS J; 2008 Oct; 275(20):4956-66. PubMed ID: 18795951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins.
    Malik S; Revington M; Smith SP; Shaw GS
    Proteins; 2008 Oct; 73(1):28-42. PubMed ID: 18384084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into human Zn(2+)-bound S100A2 from NMR and homology modeling.
    Randazzo A; Acklin C; Schäfer BW; Heizmann CW; Chazin WJ
    Biochem Biophys Res Commun; 2001 Oct; 288(2):462-7. PubMed ID: 11606065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 15N relaxation studies of Apo-Mts1: a dynamic S100 protein.
    Dutta K; Cox CJ; Basavappa R; Pascal SM
    Biochemistry; 2008 Jul; 47(29):7637-47. PubMed ID: 18627127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity.
    Fritz G; Botelho HM; Morozova-Roche LA; Gomes CM
    FEBS J; 2010 Nov; 277(22):4578-90. PubMed ID: 20977662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.