BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17705413)

  • 1. Reaction of the indole group with malondialdehyde: application for the derivatization of tryptophan residues in peptides.
    Foettinger A; Melmer M; Leitner A; Lindner W
    Bioconjug Chem; 2007; 18(5):1678-83. PubMed ID: 17705413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective enrichment of tryptophan-containing peptides from protein digests employing a reversible derivatization with malondialdehyde and solid-phase capture on hydrazide beads.
    Foettinger A; Leitner A; Lindner W
    J Proteome Res; 2007 Sep; 6(9):3827-34. PubMed ID: 17655347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an indole-based chemically cleavable linker concept for immobilizing bait compounds for protein pull-down experiments.
    Sturm M; Leitner A; Lindner W
    Bioconjug Chem; 2011 Feb; 22(2):211-7. PubMed ID: 21247093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivatisation of arginine residues with malondialdehyde for the analysis of peptides and protein digests by LC-ESI-MS/MS.
    Foettinger A; Leitner A; Lindner W
    J Mass Spectrom; 2006 May; 41(5):623-32. PubMed ID: 16541401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of indole derivatives and tryptophan peptides with interfaces of sodium dodecyl sulfate micelles.
    Imamura T; Konishi K; Konishi K
    J Pept Sci; 2006 Jun; 12(6):403-11. PubMed ID: 16355438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A side-reaction in the SPPS of Trp-containing peptides.
    Giraud M; Cavelier F; Martinez J
    J Pept Sci; 1999 Oct; 5(10):457-61. PubMed ID: 10580644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan-containing peptide helices: interactions involving the indole side chain.
    Mahalakshmi R; Sengupta A; Raghothama S; Shamala N; Balaram P
    J Pept Res; 2005 Nov; 66(5):277-96. PubMed ID: 16218995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective tryptophan modification with rhodium carbenoids in aqueous solution.
    Antos JM; Francis MB
    J Am Chem Soc; 2004 Aug; 126(33):10256-7. PubMed ID: 15315433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capture of peptides with N-terminal serine and threonine: a sequence-specific chemical method for Peptide mixture simplification.
    Chelius D; Shaler TA
    Bioconjug Chem; 2003; 14(1):205-11. PubMed ID: 12526710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrosation of N-terminally blocked tryptophan and tryptophan-containing peptides by peroxynitrite.
    Peyrot F; Ducrocq C
    Chembiochem; 2007 Jan; 8(2):217-23. PubMed ID: 17183522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization by mass spectrometry of a tryptophan-specific protein cleavage reaction.
    Vestling MM; Kelly MA; Fenselau C
    Rapid Commun Mass Spectrom; 1994 Sep; 8(9):786-90. PubMed ID: 7949339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid secondary ion mass spectra of 2-iminothiolane derivatives.
    Bartlett MG; Busch KL
    Biol Mass Spectrom; 1994 Jun; 23(6):353-6. PubMed ID: 8038228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet photodissociation mass spectrometry of bis-aryl hydrazone conjugated peptides.
    Gardner MW; Brodbelt JS
    Anal Chem; 2009 Jun; 81(12):4864-72. PubMed ID: 19449860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into indole interactions from alkali metal chloride effects on a tryptophan zipper beta-hairpin peptide.
    Dempsey CE; Mason PE
    J Am Chem Soc; 2006 Mar; 128(9):2762-3. PubMed ID: 16506730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific modification of positively-charged surfaces on human serum albumin by malondialdehyde.
    Ishii T; Ito S; Kumazawa S; Sakurai T; Yamaguchi S; Mori T; Nakayama T; Uchida K
    Biochem Biophys Res Commun; 2008 Jun; 371(1):28-32. PubMed ID: 18402766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous lipidation of a characterized peptide mixture by chemoselective ligation.
    Bourel-Bonnet L; Bonnet D; Malingue F; Gras-Masse H; Melnyk O
    Bioconjug Chem; 2003; 14(2):494-9. PubMed ID: 12643762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amine-reactive isobaric tagging reagents: requirements for absolute quantification of proteins and peptides.
    Quaglia M; Pritchard C; Hall Z; O'Connor G
    Anal Biochem; 2008 Aug; 379(2):164-9. PubMed ID: 18510936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-induced change in ozone-reactive site in indole ring of tryptophan.
    Matsumura S; Yoshimura A; Okazaki K; Fijitani N; Hattori H
    Biochem Biophys Res Commun; 2009 Mar; 380(3):498-502. PubMed ID: 19250632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan aminopeptidase activity of several indole prenyltransferases from Aspergillus fumigatus.
    Kremer A; Li SM
    Chem Biol; 2008 Jul; 15(7):729-38. PubMed ID: 18635009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linking between thymine and indolyl radical: possible mechanisms for cross-linking of DNA and tryptophan-containing peptides.
    Mitrasinovic PM
    Bioconjug Chem; 2005; 16(3):588-97. PubMed ID: 15898726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.