These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17705423)

  • 1. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data.
    Cai J; Liu R
    J Phys Chem B; 2007 Sep; 111(36):10681-6. PubMed ID: 17705423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.
    Skrdla PJ; Robertson RT
    J Phys Chem B; 2005 Jun; 109(21):10611-9. PubMed ID: 16852288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics.
    Khawam A; Flanagan DR
    J Phys Chem B; 2005 May; 109(20):10073-80. PubMed ID: 16852219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new model for thermal diffusion: kinetic approach.
    Artola PA; Rousseau B; Galliéro G
    J Am Chem Soc; 2008 Aug; 130(33):10963-9. PubMed ID: 18652459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure.
    Perejón A; Sánchez-Jiménez PE; Criado JM; Pérez-Maqueda LA
    J Phys Chem B; 2011 Mar; 115(8):1780-91. PubMed ID: 21302949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collision theory-based derivation of semiempirical equations for modeling dispersive kinetics and their application to a mixed-phase crystal decomposition.
    Skrdla PJ
    J Phys Chem A; 2006 Oct; 110(40):11494-500. PubMed ID: 17020262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure.
    Avsaroglu MD; Buzrul S; Alpas H; Akcelik M; Bozoglu F
    Int J Food Microbiol; 2006 Apr; 108(1):78-83. PubMed ID: 16387378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation on thermal explosion induced by slightly exothermic interface reaction.
    Yu MH; Li YF; Sun JH; Hasegawa K
    J Hazard Mater; 2004 Sep; 113(1-3):165-74. PubMed ID: 15363527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of nonisothermal polymer crystallization.
    Yang J; McCoy BJ; Madras G
    J Phys Chem B; 2005 Oct; 109(39):18550-7. PubMed ID: 16853389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism.
    Pérez-Maqueda LA; Criado JM; Sanchez-Jiménez PE
    J Phys Chem A; 2006 Nov; 110(45):12456-62. PubMed ID: 17091950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of rate order for degradation of drugs with nonisothermal stability experiment].
    Zhan XC; Yin GK; Ma BZ
    Yao Xue Xue Bao; 1997; 32(2):131-6. PubMed ID: 11243198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride.
    Bernard S; Fiaty K; Cornu D; Miele P; Laurent P
    J Phys Chem B; 2006 May; 110(18):9048-60. PubMed ID: 16671714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-isothermal kinetics of hard alpha-keratin thermal denaturation.
    Istrate D; Popescu C; Möller M
    Macromol Biosci; 2009 Aug; 9(8):805-12. PubMed ID: 19291668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonisothermal kinetics of acrylamide elimination and its acceleration by table salt--a model study.
    Kolek E; Simon P; Simko P
    J Food Sci; 2007 Aug; 72(6):E341-4. PubMed ID: 17995677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic model for the coupled volumetric and thermal behavior of dental composites.
    Koplin C; Jaeger R; Hahn P
    Dent Mater; 2008 Aug; 24(8):1017-24. PubMed ID: 18243295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating.
    Mishra DK; Dolan KD; Yang L
    J Food Sci; 2008 Jan; 73(1):E9-15. PubMed ID: 18211351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.
    Juliano P; Knoerzer K; Fryer PJ; Versteeg C
    Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.