BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 17705438)

  • 21. Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 Cells.
    Hart JJ; Tako E; Glahn RP
    J Agric Food Chem; 2017 Apr; 65(16):3285-3294. PubMed ID: 28361541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model].
    Lei J; Zhang MQ; Huang CY; Bai L; He ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Fast Cooking and Enhanced Iron Bioavailability Properties of the Manteca Yellow Bean (
    Wiesinger JA; Cichy KA; Tako E; Glahn RP
    Nutrients; 2018 Nov; 10(11):. PubMed ID: 30388772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seed coat removal improves iron bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model.
    DellaValle DM; Vandenberg A; Glahn RP
    J Agric Food Chem; 2013 Aug; 61(34):8084-9. PubMed ID: 23915260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vulgaris).
    Glahn RP; Tako E; Cichy K; Wiesinger J
    Food Funct; 2016 Jul; 7(7):3193-200. PubMed ID: 27326892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review: The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification.
    Petry N; Boy E; Wirth JP; Hurrell RF
    Nutrients; 2015 Feb; 7(2):1144-73. PubMed ID: 25679229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method.
    Huertas R; William Allwood J; Hancock RD; Stewart D
    Food Chem; 2022 Sep; 387():132900. PubMed ID: 35398678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model.
    Tako E; Blair MW; Glahn RP
    Nutr J; 2011 Oct; 10():113. PubMed ID: 21995581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.).
    Tako E; Beebe SE; Reed S; Hart JJ; Glahn RP
    Nutr J; 2014 Mar; 13():28. PubMed ID: 24669764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.
    Glahn R; Tako E; Hart J; Haas J; Lung'aho M; Beebe S
    Nutrients; 2017 Jul; 9(7):. PubMed ID: 28754026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.).
    Díaz-Batalla L; Widholm JM; Fahey GC; Castaño-Tostado E; Paredes-López O
    J Agric Food Chem; 2006 Mar; 54(6):2045-52. PubMed ID: 16536573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioavailability of iron and zinc from multiple micronutrient fortified beverage premixes in Caco-2 cell model.
    Pullakhandam R; Nair KM; Pamini H; Punjal R
    J Food Sci; 2011 Mar; 76(2):H38-42. PubMed ID: 21535765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model.
    Gargari BP; Razavieh SV; Mahboob S; Niknafs B; Kooshavar H
    Nutrition; 2006 Jun; 22(6):638-44. PubMed ID: 16635564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demonstrating a Nutritional Advantage to the Fast-Cooking Dry Bean (Phaseolus vulgaris L.).
    Wiesinger JA; Cichy KA; Glahn RP; Grusak MA; Brick MA; Thompson HJ; Tako E
    J Agric Food Chem; 2016 Nov; 64(45):8592-8603. PubMed ID: 27754657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of oxate, phytate, tannins and cooking on iron bioavailability from foods commonly consumed in Mexico.
    Sotelo A; González-Osnaya L; Sánchez-Chinchillas A; Trejo A
    Int J Food Sci Nutr; 2010 Feb; 61(1):29-39. PubMed ID: 20001762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability.
    Thavarajah P; Thavarajah D; Vandenberg A
    J Agric Food Chem; 2009 Oct; 57(19):9044-9. PubMed ID: 19725537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model.
    Tako E; Glahn RP
    Int J Vitam Nutr Res; 2010 Dec; 80(6):416-29. PubMed ID: 21792822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome Characterization of Developing Bean (Phaseolus vulgaris L.) Pods from Two Genotypes with Contrasting Seed Zinc Concentrations.
    Astudillo-Reyes C; Fernandez AC; Cichy KA
    PLoS One; 2015; 10(9):e0137157. PubMed ID: 26367119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans.
    Tako E; Reed S; Anandaraman A; Beebe SE; Hart JJ; Glahn RP
    PLoS One; 2015; 10(9):e0138479. PubMed ID: 26381264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds.
    Cvitanich C; Przybyłowicz WJ; Urbanski DF; Jurkiewicz AM; Mesjasz-Przybyłowicz J; Blair MW; Astudillo C; Jensen EØ; Stougaard J
    BMC Plant Biol; 2010 Feb; 10():26. PubMed ID: 20149228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.