These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 17705612)
1. Regarding convergence curve of virial expansion for the Lennard-Jones system. Apfelbaum EM; Vorob'ev VS; Martynov GA J Chem Phys; 2007 Aug; 127(6):064507. PubMed ID: 17705612 [TBL] [Abstract][Full Text] [Related]
2. Chemical potentials and phase equilibria of Lennard-Jones mixtures: a self-consistent integral equation approach. Wilson DS; Lee LL J Chem Phys; 2005 Jul; 123(4):044512. PubMed ID: 16095374 [TBL] [Abstract][Full Text] [Related]
4. The equation of state of isotropic fluids of hard convex bodies from a high-level virial expansion. You XM; Vlasov AY; Masters AJ J Chem Phys; 2005 Jul; 123(3):34510. PubMed ID: 16080747 [TBL] [Abstract][Full Text] [Related]
5. Melting line of the Lennard-Jones system, infinite size, and full potential. Mastny EA; de Pablo JJ J Chem Phys; 2007 Sep; 127(10):104504. PubMed ID: 17867758 [TBL] [Abstract][Full Text] [Related]
6. Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. Ushcats MV J Chem Phys; 2014 Sep; 141(10):101103. PubMed ID: 25217895 [TBL] [Abstract][Full Text] [Related]
7. Higher-order virial coefficients of water models. Benjamin KM; Singh JK; Schultz AJ; Kofke DA J Phys Chem B; 2007 Oct; 111(39):11463-73. PubMed ID: 17850128 [TBL] [Abstract][Full Text] [Related]
8. Freezing line of the Lennard-Jones fluid: a phase switch Monte Carlo study. McNeil-Watson GC; Wilding NB J Chem Phys; 2006 Feb; 124(6):64504. PubMed ID: 16483217 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation in the grand canonical ensemble. Eslami H; Müller-Plathe F J Comput Chem; 2007 Jul; 28(10):1763-73. PubMed ID: 17342717 [TBL] [Abstract][Full Text] [Related]
10. Adequacy of the virial equation of state and cluster expansion. Ushcats MV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042111. PubMed ID: 23679377 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima. Mairhofer J; Sadus RJ J Chem Phys; 2013 Oct; 139(15):154503. PubMed ID: 24160523 [TBL] [Abstract][Full Text] [Related]
12. Application of Fokker-Planck-Kramers equation treatment for short-time dynamics of diffusion-controlled reaction in supercritical Lennard-Jones fluids over a wide density range. Ibuki K; Ueno M J Chem Phys; 2006 Apr; 124(13):134506. PubMed ID: 16613460 [TBL] [Abstract][Full Text] [Related]
13. Viabilty of atomistic potentials for thermodynamic properties of carbon dioxide at low temperatures. Kuznetsova T; Kvamme B J Comput Chem; 2001 Nov; 22(15):1772-1781. PubMed ID: 12116410 [TBL] [Abstract][Full Text] [Related]
14. Freezing of Lennard-Jones-type fluids. Khrapak SA; Chaudhuri M; Morfill GE J Chem Phys; 2011 Feb; 134(5):054120. PubMed ID: 21303105 [TBL] [Abstract][Full Text] [Related]
15. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration. Laird BB; Davidchack RL; Yang Y; Asta M J Chem Phys; 2009 Sep; 131(11):114110. PubMed ID: 19778103 [TBL] [Abstract][Full Text] [Related]
17. Communication: The application of the global isomorphism to the study of liquid-vapor equilibrium in two and three-dimensional Lennard-Jones fluids. Kulinskii VL J Chem Phys; 2010 Oct; 133(13):131102. PubMed ID: 20942515 [TBL] [Abstract][Full Text] [Related]
19. A self-consistent Ornstein-Zernike approximation for a fluid with a screened power series interaction. Yasutomi M J Chem Phys; 2010 Oct; 133(15):154115. PubMed ID: 20969378 [TBL] [Abstract][Full Text] [Related]
20. Soft core thermodynamics from self-consistent hard core fluids. Schöll-Paschinger E; Reiner A J Chem Phys; 2006 Oct; 125(16):164503. PubMed ID: 17092101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]