BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17705796)

  • 1. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone.
    Paffett ML; Walker BR
    Essays Biochem; 2007; 43():105-19. PubMed ID: 17705796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
    Moudgil R; Michelakis ED; Archer SL
    Microcirculation; 2006 Dec; 13(8):615-32. PubMed ID: 17085423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms.
    Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Gudermann T; Schulz R; Seeger W; Grimminger F; Weissmann N
    Eur Respir J; 2008 Dec; 32(6):1639-51. PubMed ID: 19043010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH.
    Wolin MS; Ahmad M; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L159-73. PubMed ID: 16002998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
    Waypa GB; Guzy R; Mungai PT; Mack MM; Marks JD; Roe MW; Schumacker PT
    Circ Res; 2006 Oct; 99(9):970-8. PubMed ID: 17008601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Fuchs B; Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Grimminger F; Seeger W; Gudermann T; Weissmann N
    Respir Physiol Neurobiol; 2010 Dec; 174(3):282-91. PubMed ID: 20801235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.
    Manea A
    Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing.
    Wolin MS; Ahmad M; Gao Q; Gupte SA
    Antioxid Redox Signal; 2007 Jun; 9(6):671-8. PubMed ID: 17511583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension.
    Bonnet S; Michelakis ED; Porter CJ; Andrade-Navarro MA; Thébaud B; Bonnet S; Haromy A; Harry G; Moudgil R; McMurtry MS; Weir EK; Archer SL
    Circulation; 2006 Jun; 113(22):2630-41. PubMed ID: 16735674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia.
    Shimoda LA; Undem C
    Respir Physiol Neurobiol; 2010 Dec; 174(3):221-9. PubMed ID: 20801238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species signaling in pulmonary vascular smooth muscle.
    Perez-Vizcaino F; Cogolludo A; Moreno L
    Respir Physiol Neurobiol; 2010 Dec; 174(3):212-20. PubMed ID: 20797450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species.
    Bell EL; Chandel NS
    Essays Biochem; 2007; 43():17-27. PubMed ID: 17705790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A twist in the tail: synergism between mitochondria and NADPH oxidase in the hypoxia-induced elevation of reactive oxygen species in pulmonary artery.
    Ward JP
    Free Radic Biol Med; 2008 Nov; 45(9):1220-2. PubMed ID: 18786634
    [No Abstract]   [Full Text] [Related]  

  • 16. Hypoxic pulmonary vasoconstriction.
    Moudgil R; Michelakis ED; Archer SL
    J Appl Physiol (1985); 2005 Jan; 98(1):390-403. PubMed ID: 15591309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction.
    Marshall C; Mamary AJ; Verhoeven AJ; Marshall BE
    Am J Respir Cell Mol Biol; 1996 Nov; 15(5):633-44. PubMed ID: 8918370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.
    Guzy RD; Hoyos B; Robin E; Chen H; Liu L; Mansfield KD; Simon MC; Hammerling U; Schumacker PT
    Cell Metab; 2005 Jun; 1(6):401-8. PubMed ID: 16054089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling.
    Hänze J; Weissmann N; Grimminger F; Seeger W; Rose F
    Thromb Haemost; 2007 May; 97(5):774-87. PubMed ID: 17479188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.