BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17705796)

  • 21. Oxygen sensors in hypoxic pulmonary vasoconstriction.
    Weissmann N; Sommer N; Schermuly RT; Ghofrani HA; Seeger W; Grimminger F
    Cardiovasc Res; 2006 Sep; 71(4):620-9. PubMed ID: 16765922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells.
    Mehta JP; Campian JL; Guardiola J; Cabrera JA; Weir EK; Eaton JW
    Chest; 2008 Jun; 133(6):1410-1414. PubMed ID: 18339777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing.
    Waypa GB; Schumacker PT
    J Appl Physiol (1985); 2005 Jan; 98(1):404-14. PubMed ID: 15591310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion channels, oxygen sensation and signal transduction in pulmonary arterial smooth muscle.
    Kozlowski RZ
    Cardiovasc Res; 1995 Sep; 30(3):318-25. PubMed ID: 7585821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The oxygen sensing signal cascade under the influence of reactive oxygen species.
    Acker H
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2201-10. PubMed ID: 16321790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoxic pulmonary vasoconstriction--invited article.
    Mark Evans A; Ward JP
    Adv Exp Med Biol; 2009; 648():351-60. PubMed ID: 19536499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH oxidases-do they play a role in TRPC regulation under hypoxia?
    Malczyk M; Veith C; Schermuly RT; Gudermann T; Dietrich A; Sommer N; Weissmann N; Pak O
    Pflugers Arch; 2016 Jan; 468(1):23-41. PubMed ID: 26424109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein kinases in vascular smooth muscle tone--role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction.
    Ward JP; Knock GA; Snetkov VA; Aaronson PI
    Pharmacol Ther; 2004 Dec; 104(3):207-31. PubMed ID: 15556675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondria and cellular oxygen sensing in the HIF pathway.
    Taylor CT
    Biochem J; 2008 Jan; 409(1):19-26. PubMed ID: 18062771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxic pulmonary vasoconstriction.
    A Mark E
    Essays Biochem; 2007; 43():61-76. PubMed ID: 17705793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive Oxygen Species and Pulmonary Vasculature During Hypobaric Hypoxia.
    Siques P; Brito J; Pena E
    Front Physiol; 2018; 9():865. PubMed ID: 30050455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity.
    Li YN; Xi MM; Guo Y; Hai CX; Yang WL; Qin XJ
    Toxicol Lett; 2014 Jan; 224(2):165-74. PubMed ID: 24188932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current paradigms in cellular oxygen sensing.
    Schumacker PT
    Adv Exp Med Biol; 2003; 543():57-71. PubMed ID: 14713114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.
    Mittal M; Roth M; König P; Hofmann S; Dony E; Goyal P; Selbitz AC; Schermuly RT; Ghofrani HA; Kwapiszewska G; Kummer W; Klepetko W; Hoda MA; Fink L; Hänze J; Seeger W; Grimminger F; Schmidt HH; Weissmann N
    Circ Res; 2007 Aug; 101(3):258-67. PubMed ID: 17585072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing.
    Michelakis ED; Archer SL; Weir EK
    Physiol Res; 1995; 44(6):361-7. PubMed ID: 8798271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species as therapeutic targets in pulmonary hypertension.
    Freund-Michel V; Guibert C; Dubois M; Courtois A; Marthan R; Savineau JP; Muller B
    Ther Adv Respir Dis; 2013 Jun; 7(3):175-200. PubMed ID: 23328248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondria control acute and chronic responses to hypoxia.
    McElroy GS; Chandel NS
    Exp Cell Res; 2017 Jul; 356(2):217-222. PubMed ID: 28327410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular oxygen sensing by mitochondria: old questions, new insight.
    Chandel NS; Schumacker PT
    J Appl Physiol (1985); 2000 May; 88(5):1880-9. PubMed ID: 10797153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone.
    Frazziano G; Champion HC; Pagano PJ
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2166-77. PubMed ID: 22427511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. O2 sensing, mitochondria and ROS signaling: The fog is lifting.
    Waypa GB; Smith KA; Schumacker PT
    Mol Aspects Med; 2016; 47-48():76-89. PubMed ID: 26776678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.