BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17706347)

  • 21. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.
    Dale S; Markovski J; Hristovski KD
    Sci Total Environ; 2016 Sep; 563-564():965-70. PubMed ID: 26672387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media.
    Möller T; Sylvester P
    Water Res; 2008 Mar; 42(6-7):1760-6. PubMed ID: 18061234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent.
    Zeng H; Arashiro M; Giammar DE
    Water Res; 2008 Nov; 42(18):4629-36. PubMed ID: 18786691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs.
    Jiménez-Cedillo MJ; Olguín MT; Fall Ch
    J Hazard Mater; 2009 Apr; 163(2-3):939-45. PubMed ID: 18723281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3 bi-composite.
    D'Arcy M; Weiss D; Bluck M; Vilar R
    J Colloid Interface Sci; 2011 Dec; 364(1):205-12. PubMed ID: 21907345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-cycle bioregeneration of spent perchlorate-containing macroporous selective anion-exchange resin.
    Sharbatmaleki M; Batista JR
    Water Res; 2012 Jan; 46(1):21-32. PubMed ID: 22075037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration.
    Jia Y; Demopoulos GP
    Environ Sci Technol; 2005 Dec; 39(24):9523-7. PubMed ID: 16475331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.
    Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S
    Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor.
    Venkatesan AK; Sharbatmaleki M; Batista JR
    J Hazard Mater; 2010 May; 177(1-3):730-7. PubMed ID: 20097003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenate removal from water by a weak-base anion exchange fibrous adsorbent.
    Awual MR; Urata S; Jyo A; Tamada M; Katakai A
    Water Res; 2008 Feb; 42(3):689-96. PubMed ID: 17959217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perchlorate removal in Fe0/H2O systems: Impact of oxygen availability and UV radiation.
    Im JK; Son HS; Zoh KD
    J Hazard Mater; 2011 Aug; 192(2):457-64. PubMed ID: 21705137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles.
    Xiong Z; Zhao D; Pan G
    Water Res; 2007 Aug; 41(15):3497-505. PubMed ID: 17597179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.
    Zhang G; Liu H; Liu R; Qu J
    J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium.
    Castro CS; Guerreiro MC; Gonçalves M; Oliveira LC; Anastácio AS
    J Hazard Mater; 2009 May; 164(2-3):609-14. PubMed ID: 18838216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water softening by combination of ultrasound and ion exchange.
    Entezari MH; Tahmasbi M
    Ultrason Sonochem; 2009 Mar; 16(3):356-60. PubMed ID: 19014894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly selective ferric ion sorption and exchange by crystalline metal phosphonates constructed from tetraphosphonic acids.
    Wu J; Hou H; Han H; Fan Y
    Inorg Chem; 2007 Sep; 46(19):7960-70. PubMed ID: 17696492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.