BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 17706732)

  • 1. Metabolite profiling of mycorrhizal roots of Medicago truncatula.
    Schliemann W; Ammer C; Strack D
    Phytochemistry; 2008 Jan; 69(1):112-46. PubMed ID: 17706732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.
    Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH
    Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula.
    Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I
    Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum.
    Schliemann W; Schmidt J; Nimtz M; Wray V; Fester T; Strack D
    Phytochemistry; 2006 Jun; 67(12):1196-205. PubMed ID: 16790253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.
    Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V
    Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum).
    Schliemann W; Kolbe B; Schmidt J; Nimtz M; Wray V
    Phytochemistry; 2008 May; 69(8):1680-8. PubMed ID: 18384822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
    Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F
    Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm.
    Voets L; Goubau I; Olsson PA; Merckx R; Declerck S
    FEMS Microbiol Ecol; 2008 Aug; 65(2):350-60. PubMed ID: 18557940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes.
    Frenzel A; Manthey K; Perlick AM; Meyer F; Pühler A; Küster H; Krajinski F
    Mol Plant Microbe Interact; 2005 Aug; 18(8):771-82. PubMed ID: 16134889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions.
    Valot B; Negroni L; Zivy M; Gianinazzi S; Dumas-Gaudot E
    Proteomics; 2006 Apr; 6 Suppl 1():S145-55. PubMed ID: 16511816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots.
    Akiyama K; Matsuoka H; Hayashi H
    Mol Plant Microbe Interact; 2002 Apr; 15(4):334-40. PubMed ID: 12026171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots.
    Fester T; Schmidt D; Lohse S; Walter MH; Giuliano G; Bramley PM; Fraser PD; Hause B; Strack D
    Planta; 2002 Nov; 216(1):148-54. PubMed ID: 12430024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study.
    Aloui A; Recorbet G; Gollotte A; Robert F; Valot B; Gianinazzi-Pearson V; Aschi-Smiti S; Dumas-Gaudot E
    Proteomics; 2009 Jan; 9(2):420-33. PubMed ID: 19072729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots.
    Liu J; Maldonado-Mendoza I; Lopez-Meyer M; Cheung F; Town CD; Harrison MJ
    Plant J; 2007 May; 50(3):529-44. PubMed ID: 17419842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the elucidation of AM-specific transcription in Medicago truncatula.
    Krajinski F; Frenzel A
    Phytochemistry; 2007 Jan; 68(1):75-81. PubMed ID: 17141285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
    Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E
    Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation.
    Walter MH; Floss DS; Hans J; Fester T; Strack D
    Phytochemistry; 2007 Jan; 68(1):130-8. PubMed ID: 17084869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species.
    Recorbet G; Valot B; Robert F; Gianinazzi-Pearson V; Dumas-Gaudot E
    Fungal Genet Biol; 2010 Jul; 47(7):608-18. PubMed ID: 20226871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis.
    Akiyama K
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake.
    Xu P; Christie P; Liu Y; Zhang J; Li X
    Environ Pollut; 2008 Nov; 156(1):215-20. PubMed ID: 18280625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.