These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 17706738)

  • 1. The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors.
    Kodaka Y; Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2007 Sep; 47(20):2637-60. PubMed ID: 17706738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial ocular following in humans: a response to first-order motion energy.
    Sheliga BM; Chen KJ; Fitzgibbon EJ; Miles FA
    Vision Res; 2005 Nov; 45(25-26):3307-21. PubMed ID: 15894346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-latency disparity vergence eye movements: a response to disparity energy.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Oct; 46(21):3723-40. PubMed ID: 16765403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
    Chen KJ; Sheliga BM; Fitzgibbon EJ; Miles FA
    Ann N Y Acad Sci; 2005 Apr; 1039():260-71. PubMed ID: 15826980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
    Sheliga BM; Chen KJ; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Mar; 46(6-7):979-92. PubMed ID: 16242168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.
    Sheliga BM; Kodaka Y; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Jun; 46(13):2041-60. PubMed ID: 16487988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions.
    Sheliga BM; Fitzgibbon EJ; Miles FA
    Vision Res; 2008 Aug; 48(17):1758-76. PubMed ID: 18603279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The visual motion detectors underlying ocular following responses in monkeys.
    Miura K; Matsuura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Vision Res; 2006 Mar; 46(6-7):869-78. PubMed ID: 16356529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2007 Feb; 47(4):479-500. PubMed ID: 17118422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-latency disparity vergence in humans.
    Busettini C; Fitzgibbon EJ; Miles FA
    J Neurophysiol; 2001 Mar; 85(3):1129-52. PubMed ID: 11247983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The initial disparity vergence elicited with single and dual grating stimuli in monkeys: evidence for disparity energy sensing and nonlinear interactions.
    Miura K; Sugita Y; Matsuura K; Inaba N; Kawano K; Miles FA
    J Neurophysiol; 2008 Nov; 100(5):2907-18. PubMed ID: 18768642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement.
    Busettini C; Miles FA; Krauzlis RJ
    J Neurophysiol; 1996 Apr; 75(4):1392-410. PubMed ID: 8727386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversed short-latency ocular following.
    Masson GS; Yang DS; Miles FA
    Vision Res; 2002 Aug; 42(17):2081-7. PubMed ID: 12169427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial optic flow induces vergence eye movements with ultra-short latencies.
    Busettini C; Masson GS; Miles FA
    Nature; 1997 Dec; 390(6659):512-5. PubMed ID: 9394000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.
    Jaschinski W; Jainta S; Schürer M
    Vision Res; 2006 Aug; 46(16):2608-14. PubMed ID: 16530245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in perceptual and oculomotor responses revealed by apparent motion stimuli presented with an interstimulus interval.
    Nohara S; Kawano K; Miura K
    J Neurophysiol; 2015 May; 113(9):3219-28. PubMed ID: 25810485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-latency disparity vergence in humans: evidence for early spatial filtering.
    Sheliga BM; Chen KJ; Fitzgibbon EJ; Miles FA
    Ann N Y Acad Sci; 2005 Apr; 1039():252-9. PubMed ID: 15826979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-latency vergence eye movements induced by radial optic flow in humans: dependence on ambient vergence level.
    Yang D; Fitzgibbon EJ; Miles FA
    J Neurophysiol; 1999 Feb; 81(2):945-9. PubMed ID: 10036301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence and divergence to radial optic flow in infancy.
    Nawrot E; Nawrot M
    J Vis; 2019 Nov; 19(13):6. PubMed ID: 31722006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST.
    Takemura A; Murata Y; Kawano K; Miles FA
    J Neurosci; 2007 Jan; 27(3):529-41. PubMed ID: 17234585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.