BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17706761)

  • 21. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?
    Nigam SK
    Stem Cells Transl Med; 2013 Dec; 2(12):993-1000. PubMed ID: 24191267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of gene expression patterns in a model of branching morphogenesis.
    Pavlova A; Stuart RO; Pohl M; Nigam SK
    Am J Physiol; 1999 Oct; 277(4):F650-63. PubMed ID: 10516290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for Timeless in epithelial morphogenesis during kidney development.
    Li Z; Stuart RO; Qiao J; Pavlova A; Bush KT; Pohl M; Sakurai H; Nigam SK
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10038-43. PubMed ID: 10963667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system.
    Michael L; Sweeney DE; Davies JA
    J Anat; 2007 Jan; 210(1):89-97. PubMed ID: 17229286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rho kinase acts at separate steps in ureteric bud and metanephric mesenchyme morphogenesis during kidney development.
    Meyer TN; Schwesinger C; Sampogna RV; Vaughn DA; Stuart RO; Steer DL; Bush KT; Nigam SK
    Differentiation; 2006 Dec; 74(9-10):638-47. PubMed ID: 17177859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery.
    Benedetti V; Brizi V; Guida P; Tomasoni S; Ciampi O; Angeli E; Valbusa U; Benigni A; Remuzzi G; Xinaris C
    EBioMedicine; 2018 Jul; 33():253-268. PubMed ID: 30049385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A role for microfilament-based contraction in branching morphogenesis of the ureteric bud.
    Michael L; Sweeney DE; Davies JA
    Kidney Int; 2005 Nov; 68(5):2010-8. PubMed ID: 16221201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.
    Gao X; Chen X; Taglienti M; Rumballe B; Little MH; Kreidberg JA
    Development; 2005 Dec; 132(24):5437-49. PubMed ID: 16291795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LGL1, a novel branching morphogen in developing kidney, is induced by retinoic acid.
    Quinlan J; Kaplan F; Sweezey N; Goodyer P
    Am J Physiol Renal Physiol; 2007 Oct; 293(4):F987-93. PubMed ID: 17670908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early defect in branching morphogenesis of the ureteric bud in induced nephron deficit.
    Gilbert T; Cibert C; Moreau E; Géraud G; Merlet-Bénichou C
    Kidney Int; 1996 Sep; 50(3):783-95. PubMed ID: 8872952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation.
    Magenheimer BS; St John PL; Isom KS; Abrahamson DR; De Lisle RC; Wallace DP; Maser RL; Grantham JJ; Calvet JP
    J Am Soc Nephrol; 2006 Dec; 17(12):3424-37. PubMed ID: 17108316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering.
    Sakurai H; Nigam SK
    Kidney Int; 1998 Jul; 54(1):14-26. PubMed ID: 9648059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential.
    Mae SI; Ryosaka M; Sakamoto S; Matsuse K; Nozaki A; Igami M; Kabai R; Watanabe A; Osafune K
    Cell Rep; 2020 Jul; 32(4):107963. PubMed ID: 32726627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A strategy for in vitro propagation of rat nephrons.
    Steer DL; Bush KT; Meyer TN; Schwesinger C; Nigam SK
    Kidney Int; 2002 Dec; 62(6):1958-65. PubMed ID: 12427120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.
    Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S
    Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directed differentiation of ureteric bud and collecting duct organoids from human pluripotent stem cells.
    Shi M; Fu P; Bonventre JV; McCracken KW
    Nat Protoc; 2023 Aug; 18(8):2485-2508. PubMed ID: 37460630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of a novel gene promoting ureteric bud branching in the metanephros.
    Araki T; Hayashi M; Saruta T
    Kidney Int; 2003 Dec; 64(6):1968-77. PubMed ID: 14633119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney.
    Maeshima A; Sakurai H; Nigam SK
    J Am Soc Nephrol; 2006 Jan; 17(1):188-98. PubMed ID: 16338966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signals which build a tubule.
    Karihaloo A; Nickel C; Cantley LG
    Nephron Exp Nephrol; 2005; 100(1):e40-5. PubMed ID: 15731568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro.
    Zhao N; Wang X; Qin L; Guo Z; Li D
    Biochem Biophys Res Commun; 2015 Sep; 465(3):569-74. PubMed ID: 26284973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.