These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 17707226)

  • 21. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome.
    Simon AC; Zhou JC; Perera RL; van Deursen F; Evrin C; Ivanova ME; Kilkenny ML; Renault L; Kjaer S; Matak-Vinković D; Labib K; Costa A; Pellegrini L
    Nature; 2014 Jun; 510(7504):293-297. PubMed ID: 24805245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA primase acts as a molecular brake in DNA replication.
    Lee JB; Hite RK; Hamdan SM; Xie XS; Richardson CC; van Oijen AM
    Nature; 2006 Feb; 439(7076):621-4. PubMed ID: 16452983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding DNA replication by the bacteriophage T4 replisome.
    Benkovic SJ; Spiering MM
    J Biol Chem; 2017 Nov; 292(45):18434-18442. PubMed ID: 28972188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage t7 replication proteins.
    Lee J; Chastain PD; Griffith JD; Richardson CC
    J Mol Biol; 2002 Feb; 316(1):19-34. PubMed ID: 11829500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme.
    Dohrmann PR; McHenry CS
    J Mol Biol; 2005 Jul; 350(2):228-39. PubMed ID: 15923012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two essential DNA polymerases at the bacterial replication fork.
    Dervyn E; Suski C; Daniel R; Bruand C; Chapuis J; Errington J; Jannière L; Ehrlich SD
    Science; 2001 Nov; 294(5547):1716-9. PubMed ID: 11721055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-molecule studies reveal the function of a third polymerase in the replisome.
    Georgescu RE; Kurth I; O'Donnell ME
    Nat Struct Mol Biol; 2011 Dec; 19(1):113-6. PubMed ID: 22157955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous ternary extension of DNA catalyzed by a trimeric replicase assembled in vivo.
    Montón Silva A; Lapenta F; Stefan A; Dal Piaz F; Ceccarelli A; Perrone A; Hochkoeppler A
    Biochem Biophys Res Commun; 2015 Jun; 462(1):14-20. PubMed ID: 25918025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein--protein interactions in the eubacterial replisome.
    Schaeffer PM; Headlam MJ; Dixon NE
    IUBMB Life; 2005 Jan; 57(1):5-12. PubMed ID: 16036556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement.
    Hamdan SM; Johnson DE; Tanner NA; Lee JB; Qimron U; Tabor S; van Oijen AM; Richardson CC
    Mol Cell; 2007 Aug; 27(4):539-49. PubMed ID: 17707227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation.
    Lia G; Rigato A; Long E; Chagneau C; Le Masson M; Allemand JF; Michel B
    Mol Cell; 2013 Feb; 49(3):547-57. PubMed ID: 23260658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Detailed model of semi-conservative DNA replication. Possible role of DNA-polymerase errors in fragmented copying of both matrix strands].
    Mosevitskiĭ MI
    Genetika; 1976; 12(9):154-63. PubMed ID: 795718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent and Stochastic Action of DNA Polymerases in the Replisome.
    Graham JE; Marians KJ; Kowalczykowski SC
    Cell; 2017 Jun; 169(7):1201-1213.e17. PubMed ID: 28622507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA replication: keep moving and don't mind the gap.
    Langston LD; O'Donnell M
    Mol Cell; 2006 Jul; 23(2):155-60. PubMed ID: 16857582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short CCG repeat in huntingtin gene is an obstacle for replicative DNA polymerases, potentially hampering progression of replication fork.
    Le HP; Masuda Y; Tsurimoto T; Maki S; Katayama T; Furukohri A; Maki H
    Genes Cells; 2015 Oct; 20(10):817-33. PubMed ID: 26271349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA polymerase delta: a second eukaryotic DNA replicase.
    Downey KM; Tan CK; So AG
    Bioessays; 1990 May; 12(5):231-6. PubMed ID: 2196053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine.
    Kelman Z; O'Donnell M
    Annu Rev Biochem; 1995; 64():171-200. PubMed ID: 7574479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size.
    Chen D; Yue H; Spiering MM; Benkovic SJ
    J Biol Chem; 2013 Jul; 288(29):20807-20816. PubMed ID: 23729670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.