BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17707237)

  • 1. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal.
    Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S
    Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway.
    Mason JT; Kim SK; Knaff DB; Wood MJ
    Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for redox regulation of Yap1 transcription factor localization.
    Wood MJ; Storz G; Tjandra N
    Nature; 2004 Aug; 430(7002):917-21. PubMed ID: 15318225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain.
    Azevedo D; Nascimento L; Labarre J; Toledano MB; Rodrigues-Pousada C
    FEBS Lett; 2007 Jan; 581(2):187-95. PubMed ID: 17187783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation.
    Tachibana T; Okazaki S; Murayama A; Naganuma A; Nomoto A; Kuge S
    J Biol Chem; 2009 Feb; 284(7):4464-72. PubMed ID: 19106090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.
    Ouyang X; Tran QT; Goodwin S; Wible RS; Sutter CH; Sutter TR
    Free Radic Biol Med; 2011 Jan; 50(1):1-13. PubMed ID: 20971184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H2O2 sensing through oxidation of the Yap1 transcription factor.
    Delaunay A; Isnard AD; Toledano MB
    EMBO J; 2000 Oct; 19(19):5157-66. PubMed ID: 11013218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast.
    Molin M; Renault JP; Lagniel G; Pin S; Toledano M; Labarre J
    Free Radic Biol Med; 2007 Jul; 43(1):136-44. PubMed ID: 17561102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.
    Okazaki S; Naganuma A; Kuge S
    Antioxid Redox Signal; 2005; 7(3-4):327-34. PubMed ID: 15706081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling.
    Azevedo D; Tacnet F; Delaunay A; Rodrigues-Pousada C; Toledano MB
    Free Radic Biol Med; 2003 Oct; 35(8):889-900. PubMed ID: 14556853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.
    Lee C; Lee SM; Mukhopadhyay P; Kim SJ; Lee SC; Ahn WS; Yu MH; Storz G; Ryu SE
    Nat Struct Mol Biol; 2004 Dec; 11(12):1179-85. PubMed ID: 15543158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The redox domain of the Yap1p transcription factor contains two disulfide bonds.
    Wood MJ; Andrade EC; Storz G
    Biochemistry; 2003 Oct; 42(41):11982-91. PubMed ID: 14556629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis.
    Maeta K; Izawa S; Okazaki S; Kuge S; Inoue Y
    Mol Cell Biol; 2004 Oct; 24(19):8753-64. PubMed ID: 15367692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide.
    López-Mirabal HR; Thorsen M; Kielland-Brandt MC; Toledano MB; Winther JR
    FEMS Yeast Res; 2007 May; 7(3):391-403. PubMed ID: 17253982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation.
    Delaunay A; Pflieger D; Barrault MB; Vinh J; Toledano MB
    Cell; 2002 Nov; 111(4):471-81. PubMed ID: 12437921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae.
    Takanishi CL; Wood MJ
    J Proteome Res; 2011 Jun; 10(6):2715-24. PubMed ID: 21476607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.