These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17707669)

  • 1. The importance of dissolved salts to the in vivo efficacy of antifreeze proteins.
    Evans RP; Hobbs RS; Goddard SV; Fletcher GL
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):556-61. PubMed ID: 17707669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
    Kristiansen E; Pedersen SA; Zachariassen KE
    Cryobiology; 2008 Oct; 57(2):122-9. PubMed ID: 18703038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface groups of proteins on water studied by freezing/thawing hysteresis and infrared spectroscopy.
    Zelent B; Bryan MA; Sharp KA; Vanderkooi JM
    Biophys Chem; 2009 May; 141(2-3):222-30. PubMed ID: 19251353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities.
    Wang L; Duman JG
    Biochemistry; 2005 Aug; 44(30):10305-12. PubMed ID: 16042407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H; Furukawa Y
    J Phys Chem B; 2008 Jun; 112(23):7111-9. PubMed ID: 18476736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface.
    Uda Y; Zepeda S; Kaneko F; Matsuura Y; Furukawa Y
    J Phys Chem B; 2007 Dec; 111(51):14355-61. PubMed ID: 18047311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs.
    Eniade A; Purushotham M; Ben RN; Wang JB; Horwath K
    Cell Biochem Biophys; 2003; 38(2):115-24. PubMed ID: 12777711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactive antifreeze protein in flounder species. The sole freeze protectant in American plaice.
    Gauthier SY; Marshall CB; Fletcher GL; Davies PL
    FEBS J; 2005 Sep; 272(17):4439-49. PubMed ID: 16128813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of antifreeze proteins and poly(vinyl alcohol) on the nucleation of ice: a preliminary study.
    Holt CB
    Cryo Letters; 2003; 24(5):323-30. PubMed ID: 14566392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.
    Knight CA; DeVries AL
    Phys Chem Chem Phys; 2009 Jul; 11(27):5749-61. PubMed ID: 19842493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins.
    Czechura P; Tam RY; Dimitrijevic E; Murphy AV; Ben RN
    J Am Chem Soc; 2008 Mar; 130(10):2928-9. PubMed ID: 18275198
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading.
    Kubota N
    Cryobiology; 2011 Dec; 63(3):198-209. PubMed ID: 21884689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.