BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17708650)

  • 1. A comparative study of the antioxidant power of flavonoid catechin and its planar analogue.
    Leopoldini M; Russo N; Toscano M
    J Agric Food Chem; 2007 Sep; 55(19):7944-9. PubMed ID: 17708650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study of the different radical-scavenging activities of catechin, quercetin, and a rationally designed planar catechin.
    Wang LF; Zhang HY
    Bioorg Chem; 2005 Apr; 33(2):108-15. PubMed ID: 15788166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A planar catechin analogue as a promising antioxidant with reduced prooxidant activity.
    Fukuhara K; Nakanishi I; Shimada T; Ohkubo K; Miyazaki K; Hakamata W; Urano S; Ozawa T; Okuda H; Miyata N; Ikota N; Fukuzumi S
    Chem Res Toxicol; 2003 Jan; 16(1):81-6. PubMed ID: 12693034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A planar catechin analogue having a more negative oxidation potential than (+)-catechin as an electron transfer antioxidant against a peroxyl radical.
    Nakanishi I; Ohkubo K; Miyazaki K; Hakamata W; Urano S; Ozawa T; Okuda H; Fukuzumi S; Ikota N; Fukuhara K
    Chem Res Toxicol; 2004 Jan; 17(1):26-31. PubMed ID: 14727916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin.
    Dueñas M; González-Manzano S; González-Paramás A; Santos-Buelga C
    J Pharm Biomed Anal; 2010 Jan; 51(2):443-9. PubMed ID: 19442472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyranoanthocyanins: a theoretical investigation on their antioxidant activity.
    Leopoldini M; Rondinelli F; Russo N; Toscano M
    J Agric Food Chem; 2010 Aug; 58(15):8862-71. PubMed ID: 20681674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure.
    Curcio M; Puoci F; Iemma F; Parisi OI; Cirillo G; Spizzirri UG; Picci N
    J Agric Food Chem; 2009 Jul; 57(13):5933-8. PubMed ID: 19566085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study on cellular antioxidant activity of selected flavonoids.
    Rong Y; Wang Z; Wu J; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():235-9. PubMed ID: 22484257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypyrroles as antioxidants: kinetic studies on reactions of bilirubin and biliverdin dimethyl esters and synthetic model compounds with peroxyl radicals in solution. Chemical calculations on selected typical structures.
    Chepelev LL; Beshara CS; MacLean PD; Hatfield GL; Rand AA; Thompson A; Wright JS; Barclay LR
    J Org Chem; 2006 Jan; 71(1):22-30. PubMed ID: 16388613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy.
    McPhail DB; Hartley RC; Gardner PT; Duthie GG
    J Agric Food Chem; 2003 Mar; 51(6):1684-90. PubMed ID: 12617605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin.
    Veiko AG; Lapshina EA; Zavodnik IB
    Mol Cell Biochem; 2021 Dec; 476(12):4287-4299. PubMed ID: 34406575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols.
    Thavasi V; Leong LP; Bettens RP
    J Phys Chem A; 2006 Apr; 110(14):4918-23. PubMed ID: 16599462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical insights, in the liquid phase, into the antioxidant mechanism-related parameters in the 2-monosubstituted phenols.
    Bakalbassis EG; Lithoxoidou AT; Vafiadis AP
    J Phys Chem A; 2006 Sep; 110(38):11151-9. PubMed ID: 16986850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-property studies on the antioxidant activity of flavonoids present in diet.
    Teixeira S; Siquet C; Alves C; Boal I; Marques MP; Borges F; Lima JL; Reis S
    Free Radic Biol Med; 2005 Oct; 39(8):1099-108. PubMed ID: 16198236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the antioxidant properties of pyridoxine.
    Matxain JM; Ristilä M; Strid A; Eriksson LA
    J Phys Chem A; 2006 Dec; 110(48):13068-72. PubMed ID: 17134167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical elucidation of activity differences of five phenolic antioxidants.
    Zhang HY; Ge N; Zhang ZY
    Zhongguo Yao Li Xue Bao; 1999 Apr; 20(4):363-6. PubMed ID: 10452126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O-H bond dissociation enthalpy of catechol and of flavonoid antioxidants.
    Lucarini M; Pedulli GF; Guerra M
    Chemistry; 2004 Feb; 10(4):933-9. PubMed ID: 14978819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms.
    Osorio E; Pérez EG; Areche C; Ruiz LM; Cassels BK; Flórez E; Tiznado W
    J Mol Model; 2013 May; 19(5):2165-72. PubMed ID: 23283546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative DFT study of the spin trapping of methyl, mercapto, hydroperoxy, superoxide, and nitric oxide radicals by various substituted cyclic nitrones.
    Villamena FA; Hadad CM; Zweier JL
    J Phys Chem A; 2005 Mar; 109(8):1662-74. PubMed ID: 16833491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the substituent effects on the S-H bond dissociation energy and ionization energy of 3-pyridinethiol: Prediction of novel antioxidant.
    Nam PC; Nguyen MT; Chandra AK
    J Phys Chem A; 2006 Sep; 110(37):10904-11. PubMed ID: 16970388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.