BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 17708758)

  • 1. Prediction of the burial status of transmembrane residues of helical membrane proteins.
    Park Y; Hayat S; Helms V
    BMC Bioinformatics; 2007 Aug; 8():302. PubMed ID: 17708758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins.
    Park Y; Helms V
    Bioinformatics; 2007 Mar; 23(6):701-8. PubMed ID: 17237049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the translocon-mediated membrane insertion free energies of protein sequences.
    Park Y; Helms V
    Bioinformatics; 2008 May; 24(10):1271-7. PubMed ID: 18388143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins.
    Beuming T; Weinstein H
    Bioinformatics; 2004 Aug; 20(12):1822-35. PubMed ID: 14988128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
    Viklund H; Elofsson A
    Bioinformatics; 2008 Aug; 24(15):1662-8. PubMed ID: 18474507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins.
    Granseth E; Viklund H; Elofsson A
    Bioinformatics; 2006 Jul; 22(14):e191-6. PubMed ID: 16873471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assigning transmembrane segments to helices in intermediate-resolution structures.
    Enosh A; Fleishman SJ; Ben-Tal N; Halperin D
    Bioinformatics; 2004 Aug; 20 Suppl 1():i122-9. PubMed ID: 15262790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types.
    Shen H; Chou KC
    Biochem Biophys Res Commun; 2005 Aug; 334(1):288-92. PubMed ID: 16002049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis and exposure status classification of transmembrane beta barrel residues.
    Hayat S; Park Y; Helms V
    Comput Biol Chem; 2011 Apr; 35(2):96-107. PubMed ID: 21531175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the accuracy of transmembrane protein topology prediction using evolutionary information.
    Jones DT
    Bioinformatics; 2007 Mar; 23(5):538-44. PubMed ID: 17237066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Aug; 360(2):339-45. PubMed ID: 17586467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using amino acid and peptide composition to predict membrane protein types.
    Yang XG; Luo RY; Feng ZP
    Biochem Biophys Res Commun; 2007 Feb; 353(1):164-9. PubMed ID: 17174938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of buried helices in multispan alpha helical membrane proteins.
    Adamian L; Liang J
    Proteins; 2006 Apr; 63(1):1-5. PubMed ID: 16419070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs.
    Chen K; Jiang Y; Du L; Kurgan L
    J Comput Chem; 2009 Jan; 30(1):163-72. PubMed ID: 18567007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.