BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 17708770)

  • 1. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages.
    Bulazel KV; Ferreri GC; Eldridge MD; O'Neill RJ
    Genome Biol; 2007; 8(8):R170. PubMed ID: 17708770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty.
    Longo MS; Carone DM; ; Green ED; O'Neill MJ; O'Neill RJ
    BMC Genomics; 2009 Jul; 10():334. PubMed ID: 19630942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials.
    Ferreri GC; Marzelli M; Rens W; O'Neill RJ
    Cytogenet Genome Res; 2004; 107(1-2):115-8. PubMed ID: 15305065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centromere dynamics and chromosome evolution in marsupials.
    O'Neill RJ; Eldridge MD; Metcalfe CJ
    J Hered; 2004; 95(5):375-81. PubMed ID: 15388765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of latent centromeres in the Mammalian genome.
    Ferreri GC; Liscinsky DM; Mack JA; Eldridge MD; O'Neill RJ
    J Hered; 2005; 96(3):217-24. PubMed ID: 15653556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome.
    Bulazel K; Metcalfe C; Ferreri GC; Yu J; Eldridge MD; O'Neill RJ
    Genetics; 2006 Feb; 172(2):1129-37. PubMed ID: 16387881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive.
    Smalec BM; Heider TN; Flynn BL; O'Neill RJ
    Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia.
    Potter S; Cooper SJ; Metcalfe CJ; Taggart DA; Eldridge MD
    Mol Phylogenet Evol; 2012 Feb; 62(2):640-52. PubMed ID: 22122943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite DNA evolution.
    Plohl M; Meštrović N; Mravinac B
    Genome Dyn; 2012; 7():126-52. PubMed ID: 22759817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analyses of Gibbon Centromeres Reveal Dynamic Genus-Specific Shifts in Repeat Composition.
    Hartley GA; Okhovat M; O'Neill RJ; Carbone L
    Mol Biol Evol; 2021 Aug; 38(9):3972-3992. PubMed ID: 33983366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives.
    Iwata-Otsubo A; Radke B; Findley S; Abernathy B; Vallejos CE; Jackson SA
    G3 (Bethesda); 2016 Apr; 6(4):1013-22. PubMed ID: 26865698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping.
    Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W
    BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials.
    Westerman M; Meredith RW; Springer MS
    J Hered; 2010; 101(6):690-702. PubMed ID: 20581108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives.
    Hall SE; Luo S; Hall AE; Preuss D
    Genetics; 2005 Aug; 170(4):1913-27. PubMed ID: 15937135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.
    O'Neill RJ; Eldridge MD; Toder R; Ferguson-Smith MA; O'Brien PC; Graves JA
    Genome; 1999 Jun; 42(3):525-30. PubMed ID: 10382300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent patterns of breakpoint reuse in Muroid rodents.
    Mlynarski EE; Obergfell CJ; O'Neill MJ; O'Neill RJ
    Mamm Genome; 2010 Feb; 21(1-2):77-87. PubMed ID: 20033182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure].
    Gunderina LI; Kiknadze II; Istomina AG; Gusev VD; Miroshnichenko LA
    Genetika; 2005 Feb; 41(2):187-95. PubMed ID: 15810608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, cloning and characterization of two major satellite DNA families of rabbit (Oryctolagus cuniculus).
    Ekes C; Csonka E; Hadlaczky G; Cserpán I
    Gene; 2004 Dec; 343(2):271-9. PubMed ID: 15588582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and diversity of functional centromere satellites in the wild rice species Oryza brachyantha.
    Yi C; Zhang W; Dai X; Li X; Gong Z; Zhou Y; Liang G; Gu M
    Chromosome Res; 2013 Dec; 21(8):725-37. PubMed ID: 24077888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.