BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17709110)

  • 1. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.
    Zhu Q; Lane C; Ching RP; Gordon JD; Fisher CG; Dvorak MF; Cripton PA; Oxland TR
    J Biomech; 2008; 41(1):171-9. PubMed ID: 17709110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of movement of cervical spine on compressed spinal cord-meningeal complex].
    Chen DY
    Zhonghua Wai Ke Za Zhi; 1993 Aug; 31(8):460-4. PubMed ID: 8112169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cervical injuries under flexion and compression loading.
    Crowell RR; Shea M; Edwards WT; Clothiaux PL; White AA; Hayes WC
    J Spinal Disord; 1993 Apr; 6(2):175-81. PubMed ID: 8504231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thoracic and lumbar spine injury severity classification based on neurologic function grade, spinal canal deformity, and spinal biomechanical stability.
    Tsou PM; Wang J; Khoo L; Shamie AN; Holly L
    Spine J; 2006; 6(6):636-47. PubMed ID: 17088194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction: a biomechanical study.
    O'Brien JR; Dmitriev AE; Yu W; Gelb D; Ludwig S
    J Spinal Disord Tech; 2009 Jul; 22(5):340-6. PubMed ID: 19525789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
    Ivancic PC
    Accid Anal Prev; 2013 Oct; 59():185-91. PubMed ID: 23792617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms.
    Greaves CY; Gadala MS; Oxland TR
    Ann Biomed Eng; 2008 Mar; 36(3):396-405. PubMed ID: 18228144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the finite element method to study the mechanism of spinal cord injury without radiological abnormality in the cervical spine.
    Imajo Y; Hiiragi I; Kato Y; Taguchi T
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E83-7. PubMed ID: 19139658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude.
    Parkinson RJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):148-54. PubMed ID: 19121880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behavior of thoracic trabecular bone during flexion.
    Toh E; Yerby SA; Bay BK; McLain RF; Mochida J
    Tokai J Exp Clin Med; 2005 Sep; 30(3):163-70. PubMed ID: 16285607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterior cervical discectomy and fusion with a locked plate and wedged graft effectively stabilizes flexion-distraction stage-3 injury in the lower cervical spine: a biomechanical study.
    Paxinos O; Ghanayem AJ; Zindrick MR; Voronov LI; Havey RM; Carandang G; Hadjipavlou A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Jan; 34(1):E9-15. PubMed ID: 19127153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord injury.
    Bhatoe HS
    J Neurosurg; 2001 Apr; 94(2 Suppl):339-40. PubMed ID: 11302650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model.
    Kallemeier PM; Beaubien BP; Buttermann GR; Polga DJ; Wood KB
    J Spinal Disord Tech; 2008 May; 21(3):216-24. PubMed ID: 18458594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the flat torso versus the elevated torso shoulder pad removal techniques in a cadaveric cervical spine instability model.
    Horodyski M; DiPaola CP; DiPaola MJ; Conrad BP; Del Rossi G; Rechtine GR
    Spine (Phila Pa 1976); 2009 Apr; 34(7):687-91. PubMed ID: 19333100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traumatic expulsion of T4 vertebral body into the spinal canal treated by vertebrectomy and spine shortening.
    Cappuccio M; Corghi A; De Iure F; Amendola L
    Spine (Phila Pa 1976); 2014 May; 39(12):E748-51. PubMed ID: 24718074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: an in vitro study.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Clin Neurosci; 2008 Mar; 15(3):286-90. PubMed ID: 18226530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness.
    Anderson AL; McIff TE; Asher MA; Burton DC; Glattes RC
    Spine (Phila Pa 1976); 2009 Mar; 34(5):441-6. PubMed ID: 19247164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.