These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 17709128)

  • 1. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland.
    Sardans J; Peñuelas J; Estiarte M
    Chemosphere; 2008 Jan; 70(5):874-85. PubMed ID: 17709128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest.
    Sardans J; Peñuelas J
    Environ Pollut; 2007 Jun; 147(3):567-83. PubMed ID: 17137692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora.
    Bernal M; Estiarte M; Peñuelas J
    Plant Biol (Stuttg); 2011 Mar; 13(2):252-7. PubMed ID: 21309971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming.
    Llorens L; Peñuelas J; Estiarte M; Bruna P
    Ann Bot; 2004 Dec; 94(6):843-53. PubMed ID: 15466877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum.
    Llorens L; Peñuelas J; Filella I
    Physiol Plant; 2003 May; 118(1):84-95. PubMed ID: 12702017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability.
    Prieto P; Peñuelas J; Ogaya R; Estiarte M
    Ann Bot; 2008 Aug; 102(2):275-85. PubMed ID: 18565983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels.
    Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM
    Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils.
    De Nicola F; Maisto G; Alfani A
    Sci Total Environ; 2003 Jul; 311(1-3):191-203. PubMed ID: 12826392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement.
    Conesa HM; María-Cervantes A; Alvarez-Rogel J; González-Alcaraz MN
    Sci Total Environ; 2011 Sep; 409(20):4470-9. PubMed ID: 21851964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts.
    Liu D; Estiarte M; Ogaya R; Yang X; Peñuelas J
    Glob Chang Biol; 2017 Oct; 23(10):4267-4279. PubMed ID: 28514052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia.
    Sardans J; Peñuelas J
    Chemosphere; 2005 Sep; 60(9):1293-307. PubMed ID: 16018901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.
    Rodriguez JH; Klumpp A; Fangmeier A; Pignata ML
    J Hazard Mater; 2011 Mar; 187(1-3):58-66. PubMed ID: 21146924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in soil and leaf trace element concentrations: a study in Naples city centre.
    De Nicola F; Maisto G; Alfani A
    J Trace Elem Med Biol; 2003; 17 Suppl 1():75-82. PubMed ID: 14650632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction.
    Mertens J; Luyssaert S; Verheyen K
    Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace element contamination in Antarctic ecosystems.
    Sanchez-Hernandez JC
    Rev Environ Contam Toxicol; 2000; 166():83-127. PubMed ID: 10868077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation II. Plants.
    Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F
    Sci Total Environ; 2006 Jun; 363(1-3):38-45. PubMed ID: 16600330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of trace metals in organisms and ecosystems: prediction of metal bioconcentration in different organisms and estimation of exposure risks.
    Fränzle S; Markert B; Wünschmann S
    Environ Pollut; 2007 Nov; 150(1):23-33. PubMed ID: 17433508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A factor influence study of trace element bioaccumulation in moss bags.
    Cesa M; Campisi B; Bizzotto A; Ferraro C; Fumagalli F; Nimis PL
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):386-96. PubMed ID: 18214576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.