These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 1770916)

  • 21. Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes.
    Metz EN; Balcerzak P; Sagone AL
    J Clin Invest; 1976 Oct; 58(4):797-802. PubMed ID: 965487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexose monophosphate shunt activity in erythrocytes related to cell age.
    Ouwerkerk R; Damen P; de Haan K; Staal GE; Rijksen G
    Eur J Haematol; 1989 Nov; 43(5):441-7. PubMed ID: 2612618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation kinetics of polyphenol oxidase from pupae of blowfly (Sarcophaga bullata) in the dimethyl sulfoxide solution.
    Chen CQ; Li ZC; Pan ZZ; Zhu YJ; Yan RR; Wang Q; Yan JH; Chen QX
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2166-74. PubMed ID: 19669602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The response of red cell hexose monophosphate shunt after sulfhydryl inhibition.
    Sagone AL; Balcerzak SP; Metz EN
    Blood; 1975 Jan; 45(1):49-54. PubMed ID: 803110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of the hexose monophosphate pathway in the human erythrocyte by Mn2+: evidence for a Mn2+-dependent NADPH peroxidase activity.
    Bennun A; Needle MA; DeBari VA
    Biochem Med; 1985 Feb; 33(1):17-21. PubMed ID: 3994698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of dimethyl sulfoxide on sulindac disposition in rats.
    Swanson BN; Mojaverian P; Boppana VK; Dudash MR
    Drug Metab Dispos; 1981; 9(6):499-502. PubMed ID: 6120805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of [14C]glucose in Haemobartonella-like infected erythrocytes in splenectomized calves.
    Love JN; Wilson RP; McEwen EG; Wiygul G
    Am J Vet Res; 1977 Jun; 38(6):739-41. PubMed ID: 879573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomeric specificity of D-glucose phosphorylation and oxidation in human erythrocytes.
    Malaisse-Lagae F; Malaisse WJ
    Int J Biochem; 1987; 19(8):733-6. PubMed ID: 3622907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epidermal growth factor rapidly activates the hexose monophosphate shunt in kidney cells.
    Stanton RC; Seifter JL
    Am J Physiol; 1988 Feb; 254(2 Pt 1):C267-71. PubMed ID: 3258128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation.
    Thorburn DR; Kuchel PW
    Eur J Biochem; 1985 Jul; 150(2):371-86. PubMed ID: 4018089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acyl-CoAs as feedback regulators of hexose monophosphate shunt in rat adipocytes.
    Ros M; Cubero A; Lobato MF; García-Ruiz JP; Moreno FJ
    Mol Cell Biochem; 1984 Sep; 63(2):119-23. PubMed ID: 6436683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pentose cycle (hexose monophosphate shunt). Rigorous evaluation of limits to the flux from glucose using 14CO2 data, with applications to peripheral ganglia of chicken embryos.
    Larrabee MG
    J Biol Chem; 1989 Sep; 264(27):15875-9. PubMed ID: 2506171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro influence of steroidal hormones on protein and glucose metabolism of isolated granulomatous tissue cells.
    Hikawyj I; Nocenti MR
    Arch Int Pharmacodyn Ther; 1975 Sep; 217(1):86-96. PubMed ID: 1190915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylene blue-mediated hexose monophosphate shunt stimulation in human red blood cells in vitro: independence from intracellular oxidative injury.
    Baird JK
    Int J Biochem; 1984; 16(10):1053-8. PubMed ID: 6394402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of frozen erythrocytes in macrophage studies. 1. Attachment to the foreign surface receptor of the macrophages.
    Myhrvold V; Jonsen J; Mørland B
    Acta Pathol Microbiol Immunol Scand B; 1982 Aug; 90(4):303-7. PubMed ID: 7136705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of inositol hexaphosphate into red blood cells mediated by dimethyl sulfoxide.
    Franco RS; Weiner M; Wagner K; Martelo OJ
    Life Sci; 1983 Jun; 32(24):2763-8. PubMed ID: 6855471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in vitro micro-volume procedure for rapid measurement of erythrocytic hexose monophosphate shunt activity.
    Baird JK; Decker-Jackson JE; Davidson DE
    Int J Biochem; 1984; 16(10):1049-52. PubMed ID: 6440819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinvestigation of drugs and chemicals as aquaporin-1 inhibitors using pressure-induced hemolysis in human erythrocytes.
    Yamaguchi T; Iwata Y; Miura S; Kawada K
    Biol Pharm Bull; 2012; 35(11):2088-91. PubMed ID: 23123479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comparative electron cytochemical and biochemical study of ATPase and beta-glycerophosphatase activity in thymocytes, leukocytes and erythrocytes].
    Beliaev IK; Bukhvalov IB; Raĭkhlin NT
    Tsitologiia; 1978 Feb; 20(2):184-7. PubMed ID: 211682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration of reduced glutathione in erythrocytes: stoichiometric and temporal relationship to hexose monophosphate shunt activity.
    Metz EN; Balcerzak SP; Sagone AL
    Blood; 1974 Nov; 44(5):691-7. PubMed ID: 4422338
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.