BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17709182)

  • 1. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
    Gidarakos E; Aivalioti M
    J Hazard Mater; 2007 Nov; 149(3):574-81. PubMed ID: 17709182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and optimization technologies for petroleum waste management and remediation process control.
    Qin XS; Huang GH; He L
    J Environ Manage; 2009 Jan; 90(1):54-76. PubMed ID: 18694620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants.
    Yen CH; Chen KF; Kao CM; Liang SH; Chen TY
    J Hazard Mater; 2011 Feb; 186(2-3):2097-102. PubMed ID: 21255917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging.
    Halihan T; Paxton S; Graham I; Fenstemaker T; Riley M
    J Environ Monit; 2005 Apr; 7(4):283-7. PubMed ID: 15798793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada.
    He L; Huang GH; Zeng GM; Lu HW
    Water Res; 2008 May; 42(10-11):2629-39. PubMed ID: 18308365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production.
    Abdol Hamid HR; Kassim WM; El Hishir A; El-Jawashi SA
    Environ Monit Assess; 2008 Oct; 145(1-3):95-102. PubMed ID: 18097768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill.
    Vega FA; Covelo EF; Reigosa MJ; Andrade ML
    J Hazard Mater; 2009 Jul; 166(2-3):1020-9. PubMed ID: 19157704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion.
    Lee YC; Kwon TS; Yang JS; Yang JW
    J Hazard Mater; 2007 Feb; 140(1-2):340-5. PubMed ID: 17049732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil.
    Osterreicher-Cunha P; Vargas Edo A; Guimarães JR; de Campos TM; Nunes CM; Costa A; Antunes Fdos S; da Silva MI; Mano DM
    J Hazard Mater; 2004 Jul; 110(1-3):63-76. PubMed ID: 15177727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an innovative soil remediation: "Cyclodextrin-enhanced combined technology".
    Leitgib L; Gruiz K; Fenyvesi E; Balogh G; Murányi A
    Sci Total Environ; 2008 Mar; 392(1):12-21. PubMed ID: 18082247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the Prestige oil spill.
    Martín-Gil J; Navas-Gracia LM; Gómez-Sobrino E; Correa-Guimaraes A; Hernández-Navarro S; Sánchez-Báscones M; del Carmen Ramos-Sánchez M
    Bioresour Technol; 2008 Apr; 99(6):1821-9. PubMed ID: 17512195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil.
    Schmidt CA; Barbosa MC; de Almeida Mde S
    J Hazard Mater; 2007 May; 143(3):655-61. PubMed ID: 17360114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery.
    Huntley D; Beckett GD
    J Contam Hydrol; 2002 Nov; 59(1-2):3-26. PubMed ID: 12683637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.
    Lai CC; Huang YC; Wei YH; Chang JS
    J Hazard Mater; 2009 Aug; 167(1-3):609-14. PubMed ID: 19217712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable risk-based analysis towards remediation of an aquifer impacted by crude oil spills.
    Al-Busaidi Z; Baawain M; Sana A; Ebrahimi A; Omidvarborna H
    J Environ Manage; 2019 Oct; 247():333-341. PubMed ID: 31252232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.
    Tzovolou DN; Benoit Y; Haeseler F; Klint KE; Tsakiroglou CD
    Sci Total Environ; 2009 Apr; 407(8):3044-54. PubMed ID: 19201453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.