These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 17709746)
1. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Newstead S; Kim H; von Heijne G; Iwata S; Drew D Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13936-41. PubMed ID: 17709746 [TBL] [Abstract][Full Text] [Related]
2. Large-scale production of membrane proteins in Saccharomyces cerevisiae: using a green fluorescent protein fusion strategy in the production of membrane proteins. Drew D; Kim H Methods Mol Biol; 2012; 866():209-16. PubMed ID: 22454126 [TBL] [Abstract][Full Text] [Related]
3. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Drew D; Newstead S; Sonoda Y; Kim H; von Heijne G; Iwata S Nat Protoc; 2008; 3(5):784-98. PubMed ID: 18451787 [TBL] [Abstract][Full Text] [Related]
4. Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein. Delgado ML; Gil ML; Gozalbo D Yeast; 2003 Jun; 20(8):713-22. PubMed ID: 12794932 [TBL] [Abstract][Full Text] [Related]
5. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. Wurm CA; Jakobs S FEBS Lett; 2006 Oct; 580(24):5628-34. PubMed ID: 16997298 [TBL] [Abstract][Full Text] [Related]
6. Screening for high-yielding Saccharomyces cerevisiae clones: using a green fluorescent protein fusion strategy in the production of membrane proteins. Drew D; Kim H Methods Mol Biol; 2012; 866():75-86. PubMed ID: 22454116 [TBL] [Abstract][Full Text] [Related]
7. Expression and Purification of Membrane Proteins in Saccharomyces cerevisiae. King MS; Kunji ERS Methods Mol Biol; 2020; 2127():47-61. PubMed ID: 32112314 [TBL] [Abstract][Full Text] [Related]
8. Cloning, overexpression and purification of functionally active Saccharomyces cerevisiae Hop1 protein from Escherichia coli. Khan K; Madhavan TP; Muniyappa K Protein Expr Purif; 2010 Jul; 72(1):42-7. PubMed ID: 20347988 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. Jensen LT; Culotta VC J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835 [TBL] [Abstract][Full Text] [Related]
10. High-throughput liberation of water-soluble yeast content by irreversible electropermeation (HT-irEP). Zakhartsev M; Momeu C; Ganeva V J Biomol Screen; 2007 Mar; 12(2):267-75. PubMed ID: 17218663 [TBL] [Abstract][Full Text] [Related]
11. Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Figler RA; Omote H; Nakamoto RK; Al-Shawi MK Arch Biochem Biophys; 2000 Apr; 376(1):34-46. PubMed ID: 10729188 [TBL] [Abstract][Full Text] [Related]
13. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
14. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. Straede A; Heinisch JJ FEBS Lett; 2007 Sep; 581(23):4495-500. PubMed ID: 17761172 [TBL] [Abstract][Full Text] [Related]
15. High-yield production and characterization of biologically active recombinant aprotinin expressed in Saccharomyces cerevisiae. Meta A; Nakatake H; Imamura T; Nozaki C; Sugimura K Protein Expr Purif; 2009 Jul; 66(1):22-7. PubMed ID: 19233283 [TBL] [Abstract][Full Text] [Related]
16. High-yield expression and purification of a monotopic membrane glycosyltransferase. Eriksson HM; Persson K; Zhang S; Wieslander K Protein Expr Purif; 2009 Aug; 66(2):143-8. PubMed ID: 19332126 [TBL] [Abstract][Full Text] [Related]
17. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography. Scharff-Poulsen P; Pedersen PA PLoS One; 2013; 8(10):e76851. PubMed ID: 24124599 [TBL] [Abstract][Full Text] [Related]
20. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. Kawahata M; Masaki K; Fujii T; Iefuji H FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]