BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 17710262)

  • 1. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes.
    Chen RS; Huang WH; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2003 Nov; 75(22):6341-5. PubMed ID: 14616019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode.
    Mahmoud KA; Hrapovic S; Luong JH
    ACS Nano; 2008 May; 2(5):1051-7. PubMed ID: 19206503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry.
    Ly SY
    Bioelectrochemistry; 2006 May; 68(2):227-31. PubMed ID: 16309972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes.
    Jacobs CB; Vickrey TL; Venton BJ
    Analyst; 2011 Sep; 136(17):3557-65. PubMed ID: 21373669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.
    Wang SF; Xu Q
    Bioelectrochemistry; 2007 May; 70(2):296-300. PubMed ID: 16720109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.
    Rodríguez MC; Rubianes MD; Rivas GA
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6003-9. PubMed ID: 19198338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes.
    Güell AG; Meadows KE; Unwin PR; Macpherson JV
    Phys Chem Chem Phys; 2010 Sep; 12(34):10108-14. PubMed ID: 20689900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.
    Pumera M; Merkoçi A; Alegret S
    Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo detection of neurotransmitters with fast cyclic voltammetry.
    Millar J
    Methods Mol Biol; 1997; 72():251-66. PubMed ID: 9249752
    [No Abstract]   [Full Text] [Related]  

  • 16. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE; Compton RG
    Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous on-line monitoring of extracellular ascorbate depletion in the rat striatum induced by global ischemia with carbon nanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell.
    Zhang M; Liu K; Gong K; Su L; Chen Y; Mao L
    Anal Chem; 2005 Oct; 77(19):6234-42. PubMed ID: 16194084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine.
    Wen J; Zhou L; Jin L; Cao X; Ye BC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1793-8. PubMed ID: 19473890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode.
    Mazloum-Ardakani M; Beitollahi H; Ganjipour B; Naeimi H; Nejati M
    Bioelectrochemistry; 2009 Apr; 75(1):1-8. PubMed ID: 19195936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.